Part Number Hot Search : 
C1203 SFH3211 B90M6 MOC205 092315 HC353F1R EPZ3002G 368011
Product Description
Full Text Search
 

To Download STR710FZ2H6 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  april 2013 doc id 10350 rev 13 1/80 1 str71xfxx str710rz arm7tdmi? 32-bit mcu with flash, usb, can, 5 timers, adc, 10 communication interfaces features core ? arm7tdmi 32-bit risc cpu ? 59 mips @ 66 mhz from sram ? 45 mips @ 50 mhz from flash memories ? up to 256 kbytes flash program memory (10 kcycles endurance, 20 years retention @ 85 c) ? 16 kbytes flash data memory (100 kcycles endurance, 20 years retention@ 85 c) ? up to 64 kbytes ram ? external memory interface (emi) for up to 4 banks of sram, flash, rom ? multi-boot capability clock, reset and supply management ? 3.0 to 3.6 v application supply and i/os ? internal 1.8 v regulator for core supply ? clock input from 0 to 16.5 mhz ? embedded rtc osc. running from external 32 khz crystal ? embedded pll for cpu clock ? realtime clock for clock-calendar function ? 5 power saving modes: slow, wait, lpwait, stop and standby modes nested interrupt controller ? fast interrupt handling with multiple vectors ? 32 vectors with 16 irq priority levels ? 2 maskable fiq sources up to 48 i/o ports ? 30/32/48 multifunctional bidirectional i/os up to 14 ports with interrupt capability 5 timers ? 16-bit watchdog timer ? 3 16-bit timers with 2 input captures, 2 output compares, pwm and pulse counter ? 16-bit timer for timebase functions 10 communication interfaces ?2 i 2 c interfaces (1 multiplexed with spi) ? 4 uart asynchronous serial interfaces ? smartcard iso7816-3 interface on uart1 ? 2 bspi synchronous serial interfaces ? can interface (2.0b active) ? usb full speed (12 mbit/s) device function with suspend and resume ? hdlc synchronous communications 4-channel 12-bit a/d converter ? sampling frequency up to 1 khz ? conversion range: 0 to 2.5 v development tools support ? atomic bit set and res operations table 1. device summary reference root part number str71xfxx str710fz1, str710fz2 str711fr0, str711fr1, str711fr2, str712fr0, str712fr1, str712fr2, str715fr0 str710rz str710rz lqfp64 10 x 10 lqfp144 20 x 20 lfbga64 8 x 8 x 1.7 lfbga144 10 x 10 x 1.7 lfbga64 8 x 8 x 1.7 www.st.com
contents str71xfxx str710rz 2/80 doc id 10350 rev 13 contents 1 introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3 system architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.1 on-chip peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.2 related documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.3 pin description for 144-pin packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.4 pin description for 64-pin packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.5 external connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.6 i/o port configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.7 memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 4 electrical parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 4.1 parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 4.1.1 minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 4.1.2 typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 4.1.3 typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 4.1.4 loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 4.1.5 pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 4.2 absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4.3 operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 4.3.1 supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 4.3.2 clock and timing characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 4.3.3 memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4.3.4 emc characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 4.3.5 i/o port pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 4.3.6 tim timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 4.3.7 emi - external memory interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 4.3.8 i2c - inter ic control interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 4.3.9 bspi - buffered serial periph eral interface . . . . . . . . . . . . . . . . . . . . . . . 63 4.3.10 usb characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 4.3.11 adc characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
str71xfxx str710rz contents doc id 10350 rev 13 3/80 5 package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 5.1 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 5.2 thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 6 product history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 7 ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 8 known limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 9 revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
list of tables str71xfxx str710rz 4/80 doc id 10350 rev 13 list of tables table 1. device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 table 2. device overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 table 3. str710 bga ball connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 table 4. str710 pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 table 5. str711/str712/str715 pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 table 6. port bit configuration table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 table 7. ram memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 table 8. voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 table 9. current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 table 10. thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 table 11. general operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 table 12. operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 table 13. total current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 table 14. typical power consumption data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 table 15. peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 table 16. ck external clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 table 17. rtcxt1 external clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3 table 18. 32k oscillator characteristics (fosc32k= 32.768 khz) . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 table 19. pll1 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 table 20. pll2 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 table 21. low-power mode wakeup timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 6 table 22. flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 table 23. ems data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 table 24. emi data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 table 25. esd absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 table 26. static and dynamic latch-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 table 27. i/o static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 table 28. output driving current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 table 29. reset pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 table 30. tim characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 table 31. emi general characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 table 32. emi read operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 table 33. emi write operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 table 34. i2c characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 table 35. scl frequency table (fpclk1=8 mhz.,v33 = 3.3 v) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 table 36. bspi characterist ics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 table 37. usb startup time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 table 38. usb dc characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 table 39. usb: full speed driver electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 table 40. adc characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 table 41. adc accuracy with fpclk2 = 20 mhz, fadc=10 mhz, avdd=3.3 v . . . . . . . . . . . . . . . . 67 table 42. thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 table 43. a, z and x version differences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 table 44. document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
str71xfxx str710rz list of figures doc id 10350 rev 13 5/80 list of figures figure 1. str71x block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 figure 2. str710 lqfp pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 figure 3. str712/str715 lqfp64 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 figure 4. str711 lqfp64 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 figure 5. recommended external connection of v18 and v18bkp pins . . . . . . . . . . . . . . . . . . . . . 29 figure 6. memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 figure 7. mapping of flash memory versions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 figure 8. external memory map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 figure 9. pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 figure 10. pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 figure 14. ck external clock source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 figure 15. typical application with a 32 khz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 figure 16. rtc crystal oscillator and resonator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 figure 17. rpu vs. v33 with vin=vss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 figure 18. ipu vs. v33 with vin=vss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 figure 19. rpd vs. v33 with vin=v33 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 figure 20. ipd vs. v33 with vin=v33 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 figure 21. typical vol and voh at v33=3.3v (high current ports) . . . . . . . . . . . . . . . . . . . . . . . . . . 53 figure 22. typical vol vs. v33 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 figure 23. typical voh vs. v33 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 figure 24. recommended rstin pin protection.1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 figure 25. read cycle timing: 16-bit read on 16-bit memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 figure 26. read cycle timing: 32-bit read on 16-bit memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 figure 27. read cycle timing: 16-bit read on 8-bit memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 figure 28. read cycle timing: 32-bit read on 8-bit memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 figure 29. write cycle timing: 16-bit write on 16-bit memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 figure 30. write cycle timing: 32-bit write on 16-bit memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 figure 31. write cycle timing: 16-bit write on 8-bit memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 figure 32. write cycle timing: 32-bit write on 8-bit memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 figure 33. typical application with i2c bus and timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 figure 34. spi slave timing diagram with cpha=01) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 figure 35. spi slave timing diagram with cpha=11) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 figure 36. spi master timing diagram1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 figure 37. usb: data signal rise and fall time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 figure 38. adc accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 figure 39. power supply filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 figure 40. 64-pin low profile quad flat package (10x10) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 figure 41. 144-pin low profile quad flat package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 figure 42. 64-low profile fine pitch ball grid array package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 figure 43. 144-low profile fine pitch ball grid array package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 figure 44. recommended pcb design rules (0.80/0.75mm pitch bga) . . . . . . . . . . . . . . . . . . . . . . . 72 figure 45. lqfp144 str710 version ?a? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 figure 46. lqfp64 str712 version ?z? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 figure 47. bga144 str710 version ?z? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 figure 48. bga64 str711 version ?x? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 figure 49. str71xf ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
introduction str71xfxx str710rz 6/80 doc id 10350 rev 13 1 introduction this datasheet provides the str71x pinout, ordering information, mechanical and electrical device characteristics. for complete information on the str71x microcontroller memory, registers and peripherals. please refer to the str71x reference manual. for information on programming, erasing and protection of the internal flash memory please refer to the str7 flash programming reference manual. for information on the arm7tdmi core please refer to the arm7tdmi technical reference manual. . table 2. device overview features str710 fz1 str710 fz2 str710 rz str711 fr0 str711 fr1 str711 fr2 str712 fr0 str712 fr1 str712 fr2 str715 frx flash - kbytes 128+16 256+16 0 64+16 128+16 256+16 64+16 128+16 256+16 64+16 ram - kbytes 32 64 64 16 32 64 16 32 64 16 peripheral functions can, emi, usb, 48 i/os usb, 30 i/os can, 32 i/os 32 i/os operating voltage 3.0 to 3.6 v operating temperature -40 to +85c or 0 to 70 c packages t =lqfp144 20 x 20 h =lfbga144 10 x10 t =lqfp64 10 x10
str71xfxx str710rz description doc id 10350 rev 13 7/80 2 description arm ? core with embedded flash and ram the str71x series is a family of arm-powered 32-bit microcontrollers with embedded flash and ram. it combines the high per formance arm7tdmi cpu with an extensive range of peripheral func tions and enhanced i/o capabilitie s. str71xf devices have on-chip high-speed single voltage flash memory and high-speed ram. str710r devices have high-speed ram but no internal flash. the st r71x family has an embedded arm core and is therefore compatible with all arm tools and software. extensive tools support stmicroelectronics? 32-bit, arm core-based mi crocontrollers are supported by a complete range of high-end and low-cost development tools to meet the needs of application developers. this extensive line of hardware/software tools includes starter kits and complete development packages all tailored for st?s arm core-based mcus. the range of development packages includes third-party solutions that come complete with a graphical development environment and an in-circuit emulator/programmer featuring a jtag application interface. these support a range of embedded operating systems (os), while several royalty-free oss are also available. for more information, please refer to st mcu site http://www.st.com/mcu
system architecture str71xfxx str710rz 8/80 doc id 10350 rev 13 3 system architecture package choice: low pin-count 64-pin or feature-rich 144-pin lqfp or bga the str71x family is available in 5 main versions. the 144-pin versions have the full set of a ll features including can, usb and external memory interface (emi). str710f: 144-pin bga or lqfp with can, usb and emi str710r: flashless 144-pin bga or lqfp with can, usb and emi (no internal flash memory) the three 64-pin versions (lqfp) do not include external memory interface. str715f: 64-pin lqfp without can or usb str711f: 64-pin lqfp with usb str712f: 64-pin lqfp with can high speed flash memory (str71xf) the flash program memory is organized in tw o banks of 32-bit wide burst flash memories enabling true read-while-write (rww) operation. device bank 0 is up to 256 kbytes in size, typically for the application program code. bank 1 is 16 kbytes, typically used for storing data constants. both banks are accessed by the cpu with zero wait states @ 33 mhz bank 0 memory endurance is 10k write/eras e cycles and bank 1 endurance is 100k write/erase cycles. data retention is 20 years at 85c on both banks. the two banks can be accessed independently in read or write. flash memory can be accessed in two modes: burst mode: 64-bit wide memory access at up to 50 mhz. direct 32-bit wide memory access for deterministic operation at up to 33 mhz. the str7 embedded flash memory can be programmed using in-circuit programming or in-application programming. iap (in-application programming): the iap is the ability to re -program the flash memory of a microcontroller while the user program is running. icp (in-circuit programming): the icp is the ability to prog ram the flash memory of a microcontroller using jtag protocol while the device is mounted on the user application board. the flash memory can be protected against different types of unwanted access (read/write/erase). there are two types of protection: sector write protection flash debug protection (locks jtag access) refer to the str7 flash programming reference manual for details. optional external memory (str710) the non-multiplexed 16-bit data/24-bit address bus available on the str710 (144-pin) supports four 16-mbyte banks of external memory. wait states are programmable individually for each bank allowing different memory types (flash, eprom, rom, sram etc.) to be used to store programs or data. figure 1 shows the general block diagram of the device family.
str71xfxx str710rz system architecture doc id 10350 rev 13 9/80 flexible power management to minimize power consumption, you can program the str71x to switch to slow, wait, lpwait (low power wait), stop or standby mode depending on the current system activity in the application. flexible clock control two external clock sources can be used, a main clock and a 32 khz backup clock. the embedded pll allows the internal system clock (up to 66 mhz) to be generated from a main clock frequency of 16 mhz or less. the pll output frequency can be programmed using a wide selection of multipliers and dividers . the microcontrolle r core, apb1 and apb2 peripherals are in separate clock domains and can be programmed to run at different frequencies during application runtime. the clock to each peripheral is gated with an individual control bit to optimize power usage by turning off peripherals any time they are not required. voltage regulators the str71x requires an external 3.0-3.6v power supply. there are two internal voltage regulators for generating the 1.8v power supply for the core and peripherals. the main vr is switched off during low power operation. low voltage detectors both the main voltage regulator and the low power voltage regulator contain each a low voltage detection circuitry which keep the device under reset when the corresponding controlled voltage value (v 18 or v 18bkp ) falls below 1.35v (+/- 10%). this enhances the security of the system by preventing the m cu from going into an unpredictable state. an external reset circuit must be used to provide the reset at v 33 power-up. it is not sufficient to rely on the reset generated by the lvd in this case. this is because lvd operation is guaranteed only when v 33 is within the specification. 3.1 on-chip peripherals can interface (str710 and str712) the can module is compliant with the can spec ification v2.0 part b (active). the bit rate can be programmed up to 1 mbaud. usb interface (str710 and str711) the full-speed usb interface is usb v2.0 compliant and provides up to 16 bidirectional/32 unidirectional endpoints, up to 12 mb/s (full- speed), support for bulk transfer, isochronous transfers and usb suspend/resume functions. standard timers each of the four timers have a 16-bit free-running counter with 7-bit prescaler three timers each provide up to two input capture/output compare functions, a pulse counter function, and a pwm channel with selectable frequency. the fourth timer is not connected to the i/o ports. it can be used by the application software for general timing functions.
system architecture str71xfxx str710rz 10/80 doc id 10350 rev 13 realtime clock (rtc) the rtc provides a set of continuously running counters driven by the 32 khz external crystal. the rtc can be used as a general timebase or clock/calendar/alarm function. when the str71x is in standby mode the rtc can be kept running, powered by the low power voltage regulator and driven by the 32 khz external crystal. uarts the 4 uarts allow full duplex, asynchronous, communications with external devices with independently programmable tx and rx baud rates up to 1.25 mb/s. smartcard interface uart1 is configurable to function either as a general purpose uart or as an asynchronous smartcard interface as defined by iso 7816-3. it includes smartcard clock generation and provides support features for synchronous cards. buffered serial peripheral interfaces (bspi) each of the two spis allow full duplex, synchronous communications with external devices, master or slave communication at up to 5.5 mb/s in master mode and 4 mb/s in slave mode. i 2 c interfaces the two i 2 c interfaces provide multi-master and slave functions, support normal and fast i 2 c mode (400 khz) and 7 or 10-bit addressing modes. one i 2 c interface is multiplexed with one spi, so either 2xspi+1x i 2 c or 1xspi+2x i 2 c may be used at a time. hdlc interface the high level data link controller (hdlc) unit supports full duplex operation and nrz, nrzi, fm0 or manchester protocols. it has an internal 8-bit baud rate generator. a/d converter the analog to digital converter, converts in single channel or up to 4 channels in single- shot or round robin mode. resolution is 12-bit with a sampling frequency of up to 1 khz. the input voltage range is 0-2.5v. watchdog the 16-bit watchdog timer protects the application against hardware or software failures and ensures recovery by generating a reset. i/o ports the 48 i/o ports are programmable as inputs or outputs. external interrupts up to 14 external interrupts are available for application use or to wake up the application from stop mode.
str71xfxx str710rz system architecture doc id 10350 rev 13 11/80 figure 1. str71x block diagram apb bus usbdp usbdn p0[15:0] i/o port 0 flash* program memory 64/128/256k i2c0 i2c1 bspi0 bspi1 uart0 uart1 / uart2 uart3 usb can hdlc apb bridge 1 apb bridge 2 apb bus timer1 timer2 timer3 rtc ext int (xti) watchdog interrupt ctl(eic) a/d power supply prccu/pll ram 16/32/64k jtag arm7tdmi cpu ext. mem. stdby 2 af 4 af 4 af 2 af 3 af 2 af 2 af 2 af 3 af 4 af 4 af 2 af 4 af a[19:0] d[15:0] rdn wen[1:0] rtcxto rtcxti wakeup jtdi jtck jtms jtrst jtdo ck ckout rstin v18[1:0] v33[6:0] vss[9:0] v18bkp 14 af osc dbgrqs booten vreg avdd avss p1[15:0] i/o port 1 p2[15:0] i/o port 2 timer0 arm7 native bus cs[3:0) 2 af 1 af af: alternate function on i/o port pin interface (emi) a[23:20] (af) smartcard 16k data flash* *flash present in str710f, not in str710r
system architecture str71xfxx str710rz 12/80 doc id 10350 rev 13 3.2 related documentation available from www.arm.com: arm7tdmi technical reference manual available from http://www.st.com: str71x reference manual str7 flash programming manual an1774 - str71x software development getting started an1775 - str71x hardware development getting started an1776 - str71x enhanced interrupt controller an1777 - str71x memory mapping an1780 - real time clock with str71x an1781 - four 7 segment display drive using the str71x the above is a selected list only, a full list str71x application notes can be viewed at http://www.st.com .
str71xfxx str710rz system architecture doc id 10350 rev 13 13/80 3.3 pin description for 144-pin packages figure 2. str710 lqfp pinout 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 144 143 142 141 140 139 138 137 136 135 134 133 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 110 109 p0.10/u1.rx/u1.tx/scdata rdn p0.11/u1.tx/boot.1 p0.12/scclk vss v33 p2.0/csn.0 p2.1/csn.1 p0.13/u2.rx/t2.ocmpa p0.14/u2.tx/t2.icapa p2.2/csn.2 p2.3/csn.3 p2.4/a.20 p2.5/a.21 p2.6/a.22 booten p2.7/a.23 p2.8 n.c. n.c. vss v33 p2.9 p2.10 p2.11 p2.12 p2.13 p2.14 p2.15 jtdi jtms jtck jtdo jtrstn nu test p1.14/hrxd/i0.sda p1.13/hclk/i0.scl p1.10/usbclk p1.9 v33 vss a.4 a.3 a.2 a.1 a.0 d.15 d.14 d.13 d.12 d.11 d.10 usbdn usbdp p1.12/cantx p1.11/canrx n.c. p1.8 p1.7/t1.ocmpa vssio-pll v33io-pll d.9 d.8 d.7 d.6 d.5 p1.6/t1.ocmpb p1.5/t1.icapb p1.4/t1.icapa p1.3/t3.icapb/ain.3 p1.2/t3.ocmpa/ain.2 n.c. test n.c. v33io-pll n.c. vssio-pll n.c. dbgrqs ckout ck p0.15/wakeup n.c. rtcxti rtcxto stdby rstin n.c. vssbkp v18bkp n.c. n.c. v18 vss18 n.c. d.0 d.1 d.2 d.3 d.4 avdd avss n.c. n.c. n.c. p1.0/t3.ocmpb/ain.0 p1.1/t3.icapa/ain.1 p0.9/u0.tx/boot.0 p0.8/u0.rx/u0.tx p0.7/s1.ssn p0.6/s1.sclk p0.5/s1.mosi vss v33 wen.0 wen.1 a.19 a.18 a.17 a.16 a.15 a.14 v18 vss18 p0.4/s1.miso p0.3/s0.ssn/i1.sda p0.2/s0.sclk/i1.scl p0.1/s0.mosi/u3.rx p0.0/s0.miso/u3.tx a.13 a.12 a.11 a.10 a.9 a.8 a.7 a.6 a.5 v33 vss p1.15/htxd n.c. n.c. lqfp144
system architecture str71xfxx str710rz 14/80 doc id 10350 rev 13 legend / abbreviations for ta b l e 4 : type: i = input, o = output, s = supply, hiz= high impedance, in/output level: c = cmos 0.3v dd /0.7v dd c t = cmos 0.3v dd /0.7v dd with input trigger t t = ttl 0.8 v/2 v with input trigger c/t = programmable levels: cmos 0.3v dd /0.7v dd or ttl 0.8 v / 2 v port and control configuration: input: pu/pd= software enabled internal pull-up or pull down pu= in reset state, the internal 100k weak pull-up is enabled. pd = in reset state, the internal 100k weak pull-down is enabled. output: od = open drain (logic level) pp = push-pull t = true od, (p-buffer and protection diode to v dd not implemented), 5 v tolerant. table 3. str710 bga ball connections abcdefghjklm 1 p0.10 p2.0 p2.1 vss p2.2 p2.6 boot en p2.12 p2.13 p2.15 jtdi n.c. 2 vss rdn p0.11 v33 p2.3 p2.8 p2.9 jtms jtrstn test test n.c. 3 v33 p0.9 p0.12 p0.13 p2.4 n.c. p2.10 jtck nu v33 n.c. dbg rqs 4 p0.6 p0.7 p0.8 p0.14 p2.5 n.c. p2.11 jtdo ck ckout vssio- pll n.c. 5 a.19 wen.1 wen.0 p0.5 p2.7 vss p2.14 n.c. rtcx- to rtcxti n.c. p0.15 6 p0.3 a.15 a.16 a.17 a.18 v33 v18 n.c. n.c. v18bk p vss bkp stdby 7 p0.2 p0.1 p0.4 vss18 v18 a.14 d.12 d.1 d.0 nc vss18 rstin 8 a.9 a.10a.11a.13p0.0 a.0 d.11 p1.12/ cantx n.c. avss d.3 d.2 9 vss v33 a.5 a.6 v33 d.15 d.10 p1.8 d.9 p1.0 n.c. n.c. 10 a.8 n.c. p1.15 p1.13 vss d.14 usbdn p1.7 d.8 p1.5 p1.1 d.4 11 a.7 n.c. p1.14 p1.10 a.2 d.13 usbdp vss d.5 p1.4 p1.3 avdd 12 a.12 a.4 a.3 p1.9 a.1 p1.11/ canrx n.c. v33io- pll p1.6 d.7 d.6 p1.2
str71xfxx str710rz system architecture doc id 10350 rev 13 15/80 table 4. str710 pin description pin n pin name type reset state 1) input output active in stdby main function (after reset) alternate function lqfp144 bga144 input level interrupt capability od pp 1a1 p0.10/u1.rx/ u1.tx/ sc.data i/o pd c t x 4ma t port 0.10 uart1: receive data input uart1: transmit data output. note: this pin may be used for smartcard datain/dataout or single wire uart (half duplex) if programmed as alternate function output. the pin will be tri-stated except when uart transmission is in progress 2b2rd o 5) x external memory interface: active low read signal for external memory. it maps to the oe_n input of the external components. 3c2 p0.11/boot.1 /u1.tx i/o pd c t 4ma x x port 0.11 select boot configuration input uart1: transmit data output. 4 c3 p0.12/sc.clk i/o pd c t 4ma x x port 0.12 smartcard reference clock output 5d1v ss s ground voltage for digital i/os 4) 6d2v 33 s supply voltage for digital i/os 4) 7 b1 p2.0/cs .0 i/o 8) c t 8ma x x port 2.0 external memory interface: select memory bank 0 output note: this pin is forced to output push-pull 1 mode at reset to allow boot from external memory 8 c1 p2.1/cs .1 i/o pu 2) c t 8ma x x port 2.1 external memory interface: select memory bank 1 output 9d3 p0.13/u2.rx/ t2.ocmpa i/o pu c t x 4ma x x port 0.13 uart2: receive data input timer2: output compare a output 10 d4 p0.14/u2.tx/ t2.icapa i/o pu c t 4ma x x port 0.14 uart2: transmit data output timer2: input capture a input 11 e1 p2.2/cs .2 i/o pu 2) c t 8ma x x port 2.2 external memory interface: select memory bank 2 output 12 e2 p2.3/cs .3 i/o pu 2) c t 8ma x x port 2.3 external memory interface: select memory bank 3 output
system architecture str71xfxx str710rz 16/80 doc id 10350 rev 13 13 e3 p2.4/a.20 i/o pd 3) c t 8ma x x port 2.4 external memory interface: address bus 14 e4 p2.5/a.21 i/o pd 3) c t 8ma x x port 2.5 15 f1 p2.6/a.22 i/o pd 3) c t 8ma x x port 2.6 16 g1 booten i c t boot control input. enables sampling of boot[1:0] pins 17 e5 p2.7/a.23 i/o pd 3) c t 8ma x x port 2.7 external memory interface: address bus 18 f2 p2.8 i/o pu c t x 4ma x x port 2.8 external interrupt int2 19 f3 n.c. not connected (not bonded) 20 f4 n.c. not connected (not bonded) 21 f5 v ss s ground voltage for digital i/os 4) 22 f6 v 33 s supply voltage for digital i/os 4) 23 g2 p2.9 i/o pu c t x 4ma x x port 2.9 external interrupt int3 24 g3 p2.10 i/o pu c t x 4ma x x port 2.10 external interrupt int4 25 g4 p2.11 i/o pu c t x 4ma x x port 2.11 external interrupt int5 26 h1 p2.12 i/o pu c t 4ma x x port 2.12 27 j1 p2.13 i/o pu c t 4ma x x port 2.13 28 g5 p2.14 i/o pu c t 4ma x x port 2.14 29 k1 p2.15 i/o pu c t 4ma x x port 2.15 30 l1 jtdi i t t jtag data input. external pull-up required. 31 h2 jtms i t t jtag mode selection input. external pull-up required. 32 h3 jtck i c jtag clock input. external pull-up or pull-down required. 33 h4 jtdo o 8ma x jtag data output. note: reset state = hiz. 34 j2 jtrst i t t jtag reset input. external pull-up required. 35 j3 nu reserved, must be forced to ground. 36 k2 test reserved, must be forced to ground. 37 m1 n.c. not connected (not bonded) 38 l2 test reserved, must be forced to ground. 39 l3 n.c. not connected (not bonded) table 4. str710 pin description pin n pin name type reset state 1) input output active in stdby main function (after reset) alternate function lqfp144 bga144 input level interrupt capability od pp
str71xfxx str710rz system architecture doc id 10350 rev 13 17/80 40 k3 v 33io-pll s supply voltage for digital i/o circuitry and for pll reference 41 m4 n.c. not connected (not bonded) 42 l4 v ssio-pll s ground voltage for digital i/o circuitry and for pll reference 4) 43 m2 n.c. not connected (not bonded) 44 m3 dbgrqs i c t debug mode request input (active high) 45 k4 ckout o 8ma x clock output (f pclk2 ) note: enabled by ckdis register in apb bridge 2 46 j4 ck i c reference clock input 47 m5 p0.15/ wakeup it t xx port 0.15 wakeup from standby mode input. note: this port is input only. 48 l5 n.c. not connected (not bonded) 49 k5 rtcxti realtime clock input and input of 32 khz oscillator amplifier circuit 50 j5 rtcxto output of 32 khz oscillator amplifier circuit 51 m6 stdby i/o c t 4ma x x input: hardware standby mode entry input active low. caution: external pull-up to v 33 required to select normal mode. output: standby mode active low output following software standby mode entry. note : in standby mode all pins are in high impedance except those marked active in stdby 52 m7 rstin ic t x reset input 53 h5 n.c. not connected (not bonded) 54 l6 v ssbkp s x stabilization for low power voltage regulator. 55 k6 v 18bkp sx stabilization for low power voltage regulator. requires external capacitors of at least 1f between v 18bkp and v ss18bkp . see figure 5 . note: if the low power voltage regulator is bypassed, this pin can be connected to an external 1.8v supply. 56 j6 n.c. not connected (not bonded) 57 h6 n.c. not connected (not bonded) 58 g6 v 18 s stabilization for main voltage regulator. requires external capacitors of at least 10f + 33nf between v 18 and v ss18 . see figure 5 . table 4. str710 pin description pin n pin name type reset state 1) input output active in stdby main function (after reset) alternate function lqfp144 bga144 input level interrupt capability od pp
system architecture str71xfxx str710rz 18/80 doc id 10350 rev 13 59 l7 v ss18 s stabilization for main voltage regulator. 60 k7 n.c. not connected (not bonded) 61 j7 d.0 i/o 6) 8ma external memory interface: data bus 62 h7 d.1 i/o 6) 8ma 63 m8 d.2 i/o 6) 8ma 64 l8 d.3 i/o 6) 8ma 65 m10 d.4 i/o 6) 8ma 66 m11 v dda s supply voltage for a/d converter 67 k8 v ssa s ground voltage for a/d converter 68 j8 n.c. not connected (not bonded) 69 m9 n.c. not connected (not bonded) 70 l9 n.c. not connected (not bonded) 71 k9 p1.0/t3.ocm pb/ain.0 i/o pu c t 4ma x x port 1.0 timer 3: output compare b adc: analog input 0 72 l10 p1.1/t3.icap a/t3.extclk/ ain.1 i/o pu c t 4ma x x port 1.1 timer 3: input capture a or external clock input adc: analog input 1 73 m12 p1.2/t3.ocm pa/ain.2 i/o pu c t 4ma x x port 1.2 timer 3: output compare a adc: analog input 2 74 l11 p1.3/t3.icap b/ain.3 i/o pu c t 4ma x x port 1.3 timer 3: input capture b adc: analog input 3 75 k11 p1.4/t1.icap a/t1.extclk i/o pu c t 4ma x x port 1.4 timer 1: input capture a timer 1: external clock input 76 k10 p1.5/t1.icap b i/o pu c t 4ma x x port 1.5 timer 1: input capture b 77 j12 p1.6/t1.ocm pb i/o pu c t 4ma x x port 1.6 timer 1: output compare b 78 j11 d.5 i/o 6) 8ma external memory interface: data bus 79 l12 d.6 i/o 6) 8ma 80 k12 d.7 i/o 6) 8ma 81 j10 d.8 i/o 6) 8ma 82 j9 d.9 i/o 6) 8ma table 4. str710 pin description pin n pin name type reset state 1) input output active in stdby main function (after reset) alternate function lqfp144 bga144 input level interrupt capability od pp
str71xfxx str710rz system architecture doc id 10350 rev 13 19/80 83 h12 v 33io-pll s supply voltage for digital i/o circuitry and for pll reference 4) 84 h11 v ssio-pll s ground voltage for digital i/o circuitry and for pll reference 4) 85 h10 p1.7/t1.ocm pa i/o pu c t 4ma x x port 1.7 timer 1: output compare a 86 h9 p1.8 i/o pd c t 4ma x x port 1.8 87 g12 n.c. not connected (not bonded) 88 f12 p1.11/canrx i/o pu c t x 4ma x x port 1.11 can: receive data input note: on str710 and str712 only 89 h8 p1.12/cantx i/o pu c t 4ma x x port 1.12 can: transmit data output note: on str710 and str712 only 90 g11 usbdp i/o c t usb bidirectional data (data +). reset state = hiz note: on str710 and str711 only this pin requires an external pull-up to v 33 to maintain a high level. 91 g10 usbdn i/o c t usb bidirectional data (data -). reset state = hiz note: on str710 and str711 only. 92 g9 d.10 i/o 6) 8ma external memory interface: data bus 93 g8 d.11 i/o 6) 8ma 94 g7 d.12 i/o 6) 8ma 95 f11 d.13 i/o 6) 8ma 96 f10 d.14 i/o 6) 8ma 97 f9 d.15 i/o 6) 8ma 98 f8 a.0 o 7) 8ma x external memory interface: address bus 99 e12 a.1 o 7) 8ma x 100 e11 a.2 o 7) 8ma x 101 c12 a.3 o 7) 8ma x 102 b12 a.4 o 7) 8ma x 103 e10 v ss s ground voltage for digital i/o circuitry 4) 104 e9 v 33 s supply voltage for digital i/o circuitry 4) 105 d12 p1.9 i/o pd c t 4ma x x port 1.9 106 d11 p1.10/ usbclk i/o pd c/ t 4ma x x port 1.10 usb: 48 mhz clock input table 4. str710 pin description pin n pin name type reset state 1) input output active in stdby main function (after reset) alternate function lqfp144 bga144 input level interrupt capability od pp
system architecture str71xfxx str710rz 20/80 doc id 10350 rev 13 107 d10 p1.13/hclk/ i0.scl i/o pd c t x 4ma x x port 1.13 hdlc: reference clock input i2c clock 108 c11 p1.14/hrxd/ i0.sda i/o pu c t x 4ma x x port 1.14 hdlc: receive data input i2c serial data 109 b11 n.c. not connected (not bonded) 110 b10 n.c. not connected (not bonded) 111 c10 p1.15/htxd i/o pu c t 4ma x x port 1.15 hdlc: transmit data output 112 a9 v ss s ground voltage for digital i/o circuitry 4) 113 b9 v 33 s supply voltage for digital i/o circuitry 4) 114 c9 a.5 o 7) 8ma x external memory interface: address bus 115 d9 a.6 o 7) 8ma x 116 a11 a.7 o 7) 8ma x 117 a10 a.8 o 7) 8ma x 118 a8 a.9 o 7) 8ma x 119 b8 a.10 o 7) 8ma x 120 c8 a.11 o 7) 8ma x 121 a12 a.12 o 7) 8ma x 122 d8 a.13 o 7) 8ma x 123 e8 p0.0/s0.miso /u3.tx i/o pu c t 4ma x x port 0.0 spi0 master in/slave out data uart3 transmit data output note: programming af function selects uart by default. bspi must be enabled by spi_en bit in the bootcr register. 124 b7 p0.1/s0.mosi /u3.rx i/o pu c t x4ma x x port 0.1 bspi0: master out/slave in data uart3: receive data input note: programming af function selects uart by default. bspi must be enabled by spi_en bit in the bootcr register. table 4. str710 pin description pin n pin name type reset state 1) input output active in stdby main function (after reset) alternate function lqfp144 bga144 input level interrupt capability od pp
str71xfxx str710rz system architecture doc id 10350 rev 13 21/80 125 a7 p0.2/s0.sclk /i1.scl i/o pu c t x4ma x x port 0.2 bspi0: serial clock i2c1: serial clock note: programming af function selects i2c by default. bspi must be enabled by spi_en bit in the bootcr register. 126 a6 p0.3/s0.ss / i1.sda i/o pu c t 4ma x x port 0.3 spi0: slave select input active low. i2c1: serial data note: programming af function selects i2c by default. bspi must be enabled by spi_en bit in the bootcr register. 127 c7 p0.4/s1.miso i/o pu c t 4ma x x port 0.4 spi1: master in/slave out data 128 d7 v ss18 s stabilization for main voltage regulator. 129 e7 v 18 s stabilization for main voltage regulator. requires external capacitors of at least 10f + 33nf between v 18 and v ss18 . see figure 5 . 130 f7 a.14 o 7) 8ma x external memory interface: address bus 131 b6 a.15 o 7) 8ma x 132 c6 a.16 o 7) 8ma x 133 d6 a.17 o 7) 8ma x 134 e6 a.18 o 7) 8ma x 135 a5 a.19 o 7) 8ma x 136 b5 we .1 o 5) 8ma x external memory interface: active low msb write enable output 137 c5 we .0 o 5) 8ma x external memory interface: active low lsb write enable output 138 a3 v 33 s supply voltage for digital i/os 4) 139 a2 v ss s ground voltage for digital i/os 4) 140 d5 p0.5/s1.mosi i/o pu c t 4ma x x port 0.5 spi1: master out/slave in data 141 a4 p0.6/s1.sclk i/o pu c t x 4ma x x port 0.6 spi1: serial clock 142 b4 p0.7/s1.ss i/o pu c t 4ma x x port 0.7 spi1: slave select input active low table 4. str710 pin description pin n pin name type reset state 1) input output active in stdby main function (after reset) alternate function lqfp144 bga144 input level interrupt capability od pp
system architecture str71xfxx str710rz 22/80 doc id 10350 rev 13 1. the reset configuration of the i/o ports is ipupd (input pull-up/pull down). refer to table 6 on page 30 . the port bit configuration at reset is pc0=1, pc1=1, pc2=0. the port data regist er bit (pd) value depends on the pu/pd column which specifies whether the pull-up or pull-down is enabled at reset 2. in reset state, these pins configured as input pu /pd with weak pull-up enabled. they must be configured by software as alternate function (see table 6: port bit configuration table on page 30 ) to be used by the external memory interface. 3. in reset state, these pins configured as input pu/pd with weak pull-down enabled to output address 0x0000 0000 using the external memory interface. to access memory banks gr eater than 1mbyte, they need to be configured by software as alternate function (see table 6: port bit configuration table on page 30 ). 4. v 33io-pll and v 33 are internally connected. v ssio-pll and v ss are internally connected. 5. during the reset phase, these pins ar e in input pull-up state. when reset is released, they are configured as output push-pull. 6. during the reset phase, these pins ar e in input pull-up state. when reset is released, they are configured as hi-z. 7. during the reset phase, these pins are in input pull-dow n state. when reset is released, they are configured as output push-pull. 8. during the reset phase, this pin is in input floating stat e. when reset is released, it is configured as output push-pull. 143 c4 p0.8/u0.rx/ u0.tx i/o pd c t x4ma t port 0.8 uart0: receive data input uart0: transmit data output. note: this pin may be used for single wire uart (half duplex) if programmed as alternate function output. the pin will be tri-stated except when uart transmission is in progress 144 b3 p0.9/u0.tx/ boot.0 i/o pd c t 4ma x x port 0.9 select boot configuration input uart0: transmit data output table 4. str710 pin description pin n pin name type reset state 1) input output active in stdby main function (after reset) alternate function lqfp144 bga144 input level interrupt capability od pp
str71xfxx str710rz system architecture doc id 10350 rev 13 23/80 3.4 pin description for 64-pin packages figure 3. str712/str715 lqfp64 pinout 1. cantx and canrx in str712f only, in str715f they are general purpose i/os. 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 p1.14/hrxd/i0.sda p1.13/hclk/i0.scl p1.10 p1.9 vss p1.12/cantx 1) p1.11/canrx 1) p1.8 p1.7/t1.ocmpa vssio-pll v33io-pll p1.6/t1.ocmpb p1.5/t1.icapb p1.4/t1.icapa p1.3/t3.icapb/ain.3 p1.2/t3.ocmpa/ain.2 v33io-pll vssio-pll ck p0.15/wakeup rtcxti rtcxto stdby rstin vssbkp v18bkp v18 vss18 avdd avss p1.0/t3.ocmpb/ain.0 p1.1/t3.icapa/ain.1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 p0.10/u1.rx/u1.tx/scdata p0.11/u1.tx/boot.1 p0.12/scclk vss p0.13/u2.rx/t2.ocmpa p0.14/u2.tx/t2.icapa booten vss v33 jtdi jtms jtck jtdo njtrst nu test p0.9/u0.tx/boot.0 p0.8/u0.rx/u0.tx p0.7/s1.ssn p0.6/s1.sclk p0.5/s1.mosi vss v18 vss18 p0.4/s1.miso p0.3/s0.ssn/i1.sda p0.2/s0.sclk/i1.scl p0.1/s0.mosi/u3.rx p0.0/s0.miso/u3.tx v33 vss p1.15/htxd lqfp64
system architecture str71xfxx str710rz 24/80 doc id 10350 rev 13 figure 4. str711 lqfp64 pinout legend / abbreviations for table 5 : type: i = input, o = output, s = supply, hiz= high impedance, in/output level: c = cmos 0.3v dd /0.7v dd c t = cmos 0.3v dd /0.7v dd with input trigger t t = ttl 0.8v / 2v with input trigger c/t = programmable levels: cmos 0.3v dd /0.7v dd or ttl 0.8v / 2v port and control configuration: input: pu/pd= software enabled internal pull-up or pull down pu= in reset state, the internal 100k weak pull-up is enabled. pd = in reset state, the internal 100k weak pull-down is enabled. output: od = open drain (logic level) pp = push-pull t = true od, (p-buffer and protection diode to v dd not implemented), 5v tolerant. 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 p1.14/hrxd/i0.sda p1.13/hclk/i0.scl p1.10/usbclk p1.9 vss usbdn usbdp p1.8 p1.7/t1.ocmpa vssio-pll v33io-pll p1.6/t1.ocmpb p1.5/t1.icapb p1.4/t1.icapa p1.3/t3.icapb/ain.3 p1.2/t3.ocmpa/ain.2 v33io-pll vssio-pll ck p0.15/wakeup rtcxti rtcxto stdby rstin vssbkp v18bkp v18 vss18 avdd avss p1.0/t3.ocmpb/ain.0 p1.1/t3.icapa/ain.1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 p0.10/u1.rx/u1.tx/scdata p0.11/u1.tx/boot.1 p0.12/scclk vss p0.13/u2.rx/t2.ocmpa p0.14/u2.tx/t2.icapa booten vss v33 jtdi jtms jtck jtdo njtrst nu test p0.9/u0.tx/boot.0 p0.8/u0.rx/u0.tx p0.7/s1.ssn p0.6/s1.sclk p0.5/s1.mosi vss v18 vss18 p0.4/s1.miso p0.3/s0.ssn/i1.sda p0.2/s0.sclk/i1.scl p0.1/s0.mosi/u3.rx p0.0/s0.miso/u3.tx v33 vss p1.15/htxd lqfp64
str71xfxx str710rz system architecture doc id 10350 rev 13 25/80 table 5. str711/str712/str715 pin description pin n pin name type reset state 1) input output active in stdby main function (after reset) alternate function lqfp64 input level interrupt capability od pp 1 p0.10/u1.rx/ u1.tx/ sc.data i/o pd c t x 4ma t port 0.10 uart1: receive data input uart1: transmit data output. note: this pin may be used for smartcard datain/dataout or single wire uart (half duplex) if programmed as alternate function output. the pin will be tri-stated except when uart transmission is in progress 2 p0.11/boot.1 /u1.tx i/o pd c t 4ma x x port 0.11 select boot configuration input uart1: transmit data output. 3 p0.12/sc.clk i/o pd c t 4ma x x port 0.12 smartcard reference clock output 4v ss s ground voltage for digital i/os 2) 5 p0.13/u2.rx/ t2.ocmpa i/o pu c t x 4ma x x port 0.13 uart2: receive data input timer2: output compare a output 6 p0.14/u2.tx/ t2.icapa i/o pu c t 4ma x x port 0.14 uart2: transmit data output timer2: input capture a input 7booten i c t boot control input. enables sampling of boot[1:0] pins 8v ss s ground voltage for digital i/os 2) 9v 33 s supply voltage for digital i/os 2) 10 jtdi i t t jtag data input. external pull-up required. 11 jtms i t t jtag mode selection input. external pull-up required. 12 jtck i c jtag clock input. external pull-up or pull-down required. 13 jtdo o 8ma x jtag data output. note: reset state = hiz. 14 jtrst i t t jtag reset input. external pull-up required. 15 nu reserved, must be forced to ground. 16 test reserved, must be forced to ground. 17 v 33io-pll s supply voltage for digital i/o circuitry and for pll reference 2) 18 v ssio-pll s ground voltage for digital i/o circuitry and for pll reference 2) 19 ck i c reference clock input
system architecture str71xfxx str710rz 26/80 doc id 10350 rev 13 20 p0.15/ wakeup it t xx port 0.15 wakeup from standby mode input. note: this port is input only. 21 rtcxti realtime clock input and input of 32 khz oscillator amplifier circuit 22 rtcxto output of 32 khz oscillator amplifier circuit 23 stdby i/o c t 4ma x x input: hardware standby mode entry input active low. caution: external pull-up to v 33 required to select normal mode. output: standby mode active low output following software standby mode entry. note : in standby mode all pins are in high impedance except those marked active in stdby. 24 rstin ic t x reset input 25 v ssbkp s x stabilization for low power voltage regulator. 26 v 18bkp sx stabilization for low power voltage regulator. requires external capacitors of at least 1f between v 18bkp and v ss18bkp . see figure 5 . note: if the low power voltage regulator is bypassed, this pin can be connected to an external 1.8v supply. 27 v 18 s stabilization for main voltage regulator. requires external capacitors of at least 10f + 33nf between v 18 and v ss18 . see figure 5 . 28 v ss18 s stabilization for main voltage regulator. 29 v dda s supply voltage for a/d converter 30 v ssa s ground voltage for a/d converter 31 p1.0/t3.ocm pb/ain.0 i/o pu c t 4ma x x port 1.0 timer 3: output compare b adc: analog input 0 32 p1.1/t3.icap a/t3.extclk /ain.1 i/o pu c t 4ma x x port 1.1 timer 3: input capture a or external clock input adc: analog input 1 33 p1.2/t3.ocm pa/ain.2 i/o pu c t 4ma x x port 1.2 timer 3: output compare a adc: analog input 2 34 p1.3/t3.icap b/ain.3 i/o pu c t 4ma x x port 1.3 timer 3: input capture b adc: analog input 3 35 p1.4/t1.icap a/t1.extclk i/o pu c t 4ma x x port 1.4 timer 1: input capture a timer 1: external clock input table 5. str711/str712/str715 pin description (continued) pin n pin name type reset state 1) input output active in stdby main function (after reset) alternate function lqfp64 input level interrupt capability od pp
str71xfxx str710rz system architecture doc id 10350 rev 13 27/80 36 p1.5/t1.icap b i/o pu c t 4ma x x port 1.5 timer 1: input capture b 37 p1.6/t1.ocm pb i/o pu c t 4ma x x port 1.6 timer 1: output compare b 38 v 33io-pll s supply voltage for digital i/o circuitry and for pll reference 2) 39 v ssio-pll s ground voltage for digital i/o circuitry and for pll reference 2) 40 p1.7/t1.ocm pa i/o pu c t 4ma x x port 1.7 timer 1: output compare a 41 p1.8 i/o pd c t 4ma x x port 1.8 42 p1.11/canrx i/o pu c t x 4ma x x port 1.11 can: receive data input note: on str710 and str712 only 43 p1.12/cantx i/o pu c t 4ma x x port 1.12 can: transmit data output note: on str710 and str712 only 42 usbdp i/o c t usb bidirectional data (data +). reset state = hiz note: on str710 and str711 only this pin requires an external pull-up to v 33 to maintain a high level. 43 usbdn i/o c t usb bidirectional data (data -). reset state = hiz note: on str710 and str711 only. 44 v ss s ground voltage for digital i/o circuitry 2) 45 p1.9 i/o pd c t 4ma x x port 1.9 46 p1.10/usbcl k i/o pd c/ t 4ma x x port 1.10 usb: 48 mhz clock input 47 p1.13/hclk/i 0.scl i/o pd c t x 4ma x x port 1.13 hdlc: reference clock input i2c clock 48 p1.14/hrxd/i 0.sda i/o pu c t x 4ma x x port 1.14 hdlc: receive data input i2c serial data 49 p1.15/htxd i/o pu c t 4ma x x port 1.15 hdlc: transmit data output 50 v ss s ground voltage for digital i/o circuitry 2) 51 v 33 s supply voltage for digital i/o circuitry 2) table 5. str711/str712/str715 pin description (continued) pin n pin name type reset state 1) input output active in stdby main function (after reset) alternate function lqfp64 input level interrupt capability od pp
system architecture str71xfxx str710rz 28/80 doc id 10350 rev 13 52 p0.0/s0.miso /u3.tx i/o pu c t 4ma x x port 0.0 spi0 master in/slave out data uart3 transmit data output note: programming af function selects uart by default. bspi must be enabled by spi_en bit in the bootcr register. 53 p0.1/s0.mosi /u3.rx i/o pu c t x4ma x x port 0.1 bspi0: master out/slave in data uart3: receive data input note: programming af function selects uart by default. bspi must be enabled by spi_en bit in the bootcr register. 54 p0.2/s0.sclk /i1.scl i/o pu c t x4ma x x port 0.2 bspi0: serial clock i2c1: serial clock note: programming af function selects i2c by default. bspi must be enabled by spi_en bit in the bootcr register. 55 p0.3/s0.ss /i1 .sda i/o pu c t 4ma x x port 0.3 spi0: slave select input active low. i2c1: serial data note: programming af function selects i2c by default. bspi must be enabled by spi_en bit in the bootcr register. 56 p0.4/s1.miso i/o pu c t 4ma x x port 0.4 spi1: mast er in/slave out data 57 v ss18 s stabilization for main voltage regulator. 58 v 18 s stabilization for main voltage regulator. requires external capacitors of at least 10f + 33nf between v 18 and v ss18 . see figure 5 . 59 v ss s ground voltage for digital i/os 60 p0.5/s1.mosi i/o pu c t 4ma x x port 0.5 spi1: master out/slave in data 61 p0.6/s1.sclk i/o pu c t x 4ma x x port 0.6 spi1: serial clock 62 p0.7/s1.ss i/o pu c t 4ma x x port 0.7 spi1: slave select input active low table 5. str711/str712/str715 pin description (continued) pin n pin name type reset state 1) input output active in stdby main function (after reset) alternate function lqfp64 input level interrupt capability od pp
str71xfxx str710rz system architecture doc id 10350 rev 13 29/80 1. the reset configuration of the i/o ports is ipupd (input pull-up/pull down). refer to table 6 on page 30 . the port bit configuration at reset is pc0=1, pc1=1, pc2=0. the port data regist er bit (pd) value depends on the pu/pd column which specifies whether the pull-up or pull-down is enabled at reset 2. v 33io-pll and v 33 are internally connected. v ssio-pll and v ss are internally connected. 3.5 external connections figure 5. recommended external connection of v 18 and v 18bkp pins 63 p0.8/u0.rx/u 0.tx i/o pd c t x4ma t port 0.8 uart0: receive data input uart0: transmit data output. note: this pin may be used for single wire uart (half duplex) if programmed as alternate function output. the pin will be tri-stated except when uart transmission is in progress 64 p0.9/u0.tx/b oot.0 i/o pd c t 4ma x x port 0.9 select boot configuration input uart0: transmit data output table 5. str711/str712/str715 pin description (continued) pin n pin name type reset state 1) input output active in stdby main function (after reset) alternate function lqfp64 input level interrupt capability od pp lqfp144 lqfp64 58 57 27 129 128 33 nf 59 10 f 10 f 33 nf 54 55 1f 25 26 1f 28 58 v 18bkp v 18 v 18 v 18 v 18 v 18bkp
system architecture str71xfxx str710rz 30/80 doc id 10350 rev 13 3.6 i/o port configuration legend: ain: analog input cmos: cmos input levels ipupd: input pull up /pull down ttl: ttl input levels n.a.: not applicable. in output mode, a read access to the port gets the output latch value. table 6. port bit configuration table configuration mode input buffer pxd register pxc2 register pxc1 register pxc0 register read access write access input ttl input floating ttl floating i/o pin don?t care 0 0 1 cmos input floating cmos floating i/o pin don?t care 0 1 0 cmos input pull-down (ipupd) cmos pull- down i/o pin 0 0 1 1 cmos input pull-up (ipupd) cmos pull-up i/o pin 1 0 1 1 analog input ain 0 don?t care 0 0 0 output output open-drain n.a. i/o pin 0 or 1 1 0 0 output push-pull n.a. last value written 0 or 1 1 0 1 alternate function open-drain cmos floating i/o pin don?t care 1 1 0 alternate function push-pull cm os floating i/o pin don?t care 1 1 1
str71xfxx str710rz system architecture doc id 10350 rev 13 31/80 3.7 memory mapping figure 6. memory map apb bridge 2 regs addressable memory space 0 1 2 3 4 4k 5 6 7 0x2000 0000 0x4000 0000 0x6000 0000 0x8000 0000 0xa000 0000 0xc000 0000 0xe000 0000 0xffff ffff 0xc000 0000 0xc000 1000 0xc000 2000 0xc000 3000 0xc000 4000 0xc000 5000 0xc000 6000 0xc000 7000 0xc000 8000 0xc000 9000 0xc000 a000 0xc000 b000 0xc000 c000 0xe000 1000 0xe000 2000 0xe000 3000 0xe000 4000 0xffff ffff 0x0000 0000 apb memory space 4 gbytes flash/ram/emi extmem 64mb 0xffff f800 4k eic 0xffff f800 apb bridge 1 regs reserved flash 256k+16k+36b b0f0 b0f4 b0f5 b0f6 b1f0 0x4000 0000 8k 8k 32k 64k 64k 64k flash memory space 272 kbytes + regs 0x4000 4000 0x4000 6000 0x4001 0000 0x4002 0000 0x4003 0000 reserved 4k (*) flash aliased at 0x0000 0000h by system decoder for booting with valid instruction upon reset from block b0 (8 kbytes) 0xe000 0000 0xe000 5000 0xe000 6000 0xe000 7000 0xe000 8000 0xe000 9000 0xe000 a000 0xe000 b000 i 2 c 0 i2c 1 reserved uart 0 uart 1 uart 2 uart 3 usb + ram bspi 0 bspi 1 xti reserved ioport 1 ioport 2 adc clkout timer 3 rtc wdg 0xe000 e000 0xe000 d000 0xe000 c000 0xc000 d000 0xc000 e000 prccu 1k can b0f7 0x400c 0000 0x400c 4000 0x4010 0000 reserved 8k timer 0 timer 1 timer 2 reserved reserved hdlc + ram reserved 0xc001 0000 0xc000 f000 b1f1 0x400c 2000 reserved 0x4004 0000 8k 0x4010 dfbf 36b flash registers 0x4000 2000 ram 64k apb1 apb2 eic b0f2 b0f1 4k 4k 4k 4k 4k 4k 4k 4k 4k 4k 4k 4k 4k 4k 4k reserved reserved ioport 0 64k 64k 4k 4k 4k 4k 4k 4k 4k 4k 4k 4k 4k 4k 4k 4k 4k 4k b0f3 8k 8k 0x4000 8000 see figure 8
system architecture str71xfxx str710rz 32/80 doc id 10350 rev 13 figure 7. mapping of flash memory versions table 7. ram memory mapping part number ram size start address end address str715fr0xx str711fr0xx str712fr0xx 16 kbytes 0x2000 0000 0x2000 3fff str710fz1xx str711fr1xx str712fr1xx 32 kbytes 0x2000 0000 0x2000 7fff str710fr2xx str710rxx str711fr2xx str712fr2xx 64 kbytes 0x2000 0000 0x2000 ffff b0f0 b0f4 reserved reserved b1f0 0x4000 0000 8k 8k 32k 64k 64k 64k flash memory space 64 kbytes + 16k rww + regs 0x4000 4000 0x4000 6000 0x4001 0000 0x4002 0000 0x4003 0000 reserved 0x400c 0000 0x400c 4000 0x4010 0000 reserved 8k b1f1 0x400c 2000 reserved 0x4004 0000 8k 0x4010 dfbf 36b flash registers 0x4000 2000 b0f2 b0f1 b0f3 8k 8k 0x4000 8000 b0f0 b0f4 b0f5 reserved b1f0 0x4000 0000 8k 8k 32k 64k 64k 64k flash memory space 128 kbytes + 16k rww + regs 0x4000 4000 0x4000 6000 0x4001 0000 0x4002 0000 0x4003 0000 reserved 0x400c 0000 0x400c 4000 0x4010 0000 reserved 8k b1f1 0x400c 2000 reserved 0x4004 0000 8k 0x4010 dfbf 36b flash registers 0x4000 2000 b0f2 b0f1 b0f3 8k 8k 0x4000 8000 b0f0 b0f4 b0f5 b0f6 b1f0 0x4000 0000 8k 8k 32k 64k 64k 64k flash memory space 256 kbytes + 16k rww + regs 0x4000 4000 0x4000 6000 0x4001 0000 0x4002 0000 0x4003 0000 b0f7 0x400c 0000 0x400c 4000 0x4010 0000 reserved 8k b1f1 0x400c 2000 reserved 0x4004 0000 8k 0x4010 dfbf 36b flash registers 0x4000 2000 b0f2 b0f1 b0f3 8k 8k 0x4000 8000 str715fr0xx str711fr0xx str712fr0xx str711fr1xx str712fr1xx str710f72xx str711fr2xx str712fr2xx str710fz1xx
str71xfxx str710rz system architecture doc id 10350 rev 13 33/80 figure 8. external memory map drawing not in scale addressable memory space 0 1 2 3 4 5 6 7 0x2000 0000 0x4000 0000 0x6000 0000 0x8000 0000 0xa000 0000 0xc000 0000 0xe000 0000 0xffff ffff 0x0000 0000 4 gbytes flash/ram/emi extmem 0xffff f800 reserved flash bcon3 bank3 bank2 0x6000 0000 16m 16m 16m 16m 0x6200 0000 0x6400 0000 0x6600 0000 reserved prccu bank1 ram apb1 apb2 eic bcon1 bcon2 bcon0 0x6c00 0000 0x6c00 0004 0x6c00 0008 0x6c00 000c register register register register bank0 external memory space 64 mbytes csn.0 csn.1 csn.2 csn.3 0x60ff ffff 0x62ff ffff 0x64ff ffff 0x66ff ffff
electrical parameters str71xfxx str710rz 34/80 doc id 10350 rev 13 4 electrical parameters 4.1 parameter conditions unless otherwise specified, all voltages are referred to v ss . 4.1.1 minimum and maximum values unless otherwise specified the minimum and ma ximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at t a =25c and t a =t a max (given by the selected temperature range). data based on characterization results, desi gn simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean3 ). 4.1.2 typical values unless otherwise specified, typical data are based on t a =25c, v 33 =3.3v (for the 3.0v v 33 3.6v voltage range) and v 18 =1.8v. they are given only as design guidelines and are not tested. typical adc accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean2 ) . 4.1.3 typical curves unless otherwise specified, all typical curves are given only as design guidelines and are not tested. 4.1.4 loading capacitor the loading conditions used for pin parameter measurement are shown in figure 9 . 4.1.5 pin input voltage the input voltage measurement on a pin of the device is described in figure 10 . figure 9. pin loading conditions figure 10. pin input voltage l =50pf str7 pin v in str7 pin
str71xfxx str710rz electrical parameters doc id 10350 rev 13 35/80 4.2 absolute maximum ratings stresses above those listed as ?absolute ma ximum ratings? may cause permanent damage to the device. this is a stress rating only and functional operation of the device under these conditions is not implied. exposure to maximum rating conditions for extended periods may affect device reliability. table 8. voltage characteristics symbol ratings min max unit v 33 - v ss external 3.3v supply voltage (including av dd and v 33io- pll ) 2) -0.3 4.0 v v 18bkp - v ssbkp digital 1.8v supply voltage on v 18bkp backup supply 2) -0.3 2.0 v in input voltage on true open drain pin (p0.10) 1) v ss -0.3 +5.5 input voltage on any other pin 1) v ss -0.3 v 33 +0.3 | v 33x | variations between different 3.3v power pins 50 50 mv | v 18x | variations between different 1.8v power pins 5) 25 25 |v ssx - v ss | variations between all the different ground pins 50 50 v esd(hbm) electro-static discharge voltage (human body model) see : absolute maximum ratings (electrical sensitivity) on page 49 v esd(mm) electro-static discharge voltage (machine model)
electrical parameters str71xfxx str710rz 36/80 doc id 10350 rev 13 the i inj(pin) must never be exceeded. this is implicitly insured if v in maximum is respected. if v in maximum cannot be respected, the injection current must be limited externally to the i inj(pin) value. a positive injection is induced by v in >v 33 while a negative injection is induced by v in str71xfxx str710rz electrical parameters doc id 10350 rev 13 37/80 4.3 operating conditions subject to general operating conditions for v 33 , and t a . 1. data guaranteed by characteri zation, not tested in production table 11. general operating conditions symbol parameter conditions min max unit f mclk internal cpu clock frequency accessing sram or external memory with 0 wait states 0 66 mhz accessing flash in burst mode 050 executing from flash with rww 0 45 1) accessing flash with 0 wait states 033 f pclk internal apb clock frequency 0 33 mhz v 33 standard operating voltage (includes v 33i0_pll) 3.0 3.6 v v 18bkp backup operating voltage 1.4 1.8 v t a ambient temperature range 6 partnumber suffix -40 85 c table 12. operating conditions at power-up / power-down symbol parameter conditions min typ max unit t v33 v 33 rise time rate subject to general operating conditions for t a . 20 s/v 20 ms/v
electrical parameters str71xfxx str710rz 38/80 doc id 10350 rev 13 4.3.1 supply current characteristics the current consumption is measured as described in figure 9 on page 34 and figure 10 on page 34 . total current consumption the mcu is placed under the following conditions: all i/o pins in input mode with a static value at v 33 or v ss (no load) all peripherals are disabled except if explicitly mentioned. embedded regulators are used to provide 1.8v (except if explicitly mentioned) subject to general operating conditions for v 33 , and t a . notes: 1. typical data are based on t a =25c, v 33 =3.3v. 2. data based on characterization results, tested in production at v 33 , f mclk max. and t a max. 3. based on device characterisa tion, device power consumption in stop mode at t a 25c is predicted to be 30a or less in 99.730020% of parts. 4. the conditions for these c onsumption measurements are des cribed in application note an2100. table 13. total current consumption symbol parameter conditions typ 1) max 2) unit i dd 4) supply current in run mode f mclk =66 mhz, ram execution 73.6 100 ma f mclk =32 mhz, flash non-burst execution 49.3 supply current in stop mode t a =25c 10 50 3) a supply current in standby mode osc32k bypassed 12 30 a
str71xfxx str710rz electrical parameters doc id 10350 rev 13 39/80 table 14. typical power consumption data symbol parameter conditions typical current on v33 unit i ddrun run mode current from ram all periphs on mclk = 16 mhz, pclk1 = pclk2 = 16 mhz 23 ma mclk = 32 mhz, pclk1 = pclk2 = 32 mhz 40 mclk = 48 mhz, pclk1 = pclk2 = 24 mhz 50 mclk = 64 mhz, pclk1 = pclk2 = 32 mhz 63 all periphs off mclk = 16 mhz 16 mclk = 32 mhz 26 mclk = 48 mhz 39 mclk = 64 mhz 48 run mode current from flash all periphs on mclk = 16 mhz, pclk1 = pclk2 = 16 mhz 27 mclk = 32 mhz, pclk1 = pclk2 = 32 mhz 47 mclk = 48 mhz, pclk1 = pclk2 = 24 mhz 62 all periphs off mclk = 16 mhz 21 mclk = 32 mhz 36 mclk = 48 mhz 53 i ddslow slow mode current mclk = ck_af (32 khz), mvr off 1.7 i ddwait wait mode current (all periphs on) pclk1 = pclk2 = 1 mhz 13 i ddlpwait lpwait mode current ck_af (32 khz), main vreg off, flash in power-down 37 a i ddstop stop mode current main vreg off, flash in power down, rtc on 18 main vreg off, flash in power down, rtc off 10 i ddsb standby mode current lp vreg on, lvd on, rtc on 10 lp vreg off (ext 1.8v on v18bkp), lvd on, rtc on 9 lp vreg off (ext1.8v on v18bkp), lvd off, rtc on 5 lp vreg off (ext 1.8v on v18bkp), lvd off, rtc off 1
electrical parameters str71xfxx str710rz 40/80 doc id 10350 rev 13 figure 11. stop i dd vs. v 33 figure 12. standby i dd vs. v 33 figure 13. wfi i dd vs. v 33 0 10 20 30 40 50 60 70 80 90 100 3 3.1 3.2 3.3 3.4 3.5 3.6 v33 (v) iddstop (a) ta=-45 to +25c ta=+90c 0 5 10 15 20 25 3 3.1 3.2 3.3 3.4 3.5 3.6 v33 (v) iddstdby (a) ta=-45c ta=0c ta=+25c ta=+90c 50 60 70 80 90 100 3 3.1 3.2 3.3 3.4 3.5 3.6 v33 (v) iddwfi (a) ta=-40 to +90c
str71xfxx str710rz electrical parameters doc id 10350 rev 13 41/80 on-chip peripherals notes : 1. data based on a differential i dd measurement between reset configur ation and timer counter running at 16mhz. no ic/oc programm ed (no i/o pads toggling). 2. data based on a differential i dd measurement between the on-chip peripheral when kept under reset and not clocked and the on-chip peripheral when clocke d and not kept under reset. no i/o pads toggling. 3. data based on a differential i dd measurement between reset configuration and continuous a/d conversions. table 15. peripheral current consumption symbol parameter conditions typ unit i dd(pll1) pll1 supply current t a = 25c 3.42 ma i dd(pll2) pll2 supply current 5.81 i dd(tim) tim timer supply current 1) t a = 25c, f pclk1= f pclk2 =33 mhz 0.88 i dd(bspi) bspi supply current 2) 1.1 i dd(uart) uart supply current 2) 1.05 i dd(i2c) i2c supply current 2) 0.45 i dd(adc) adc supply current when converting 5) 1.89 i dd(hdlc) hdlc supply current 2) 1.82 i dd(usb) usb supply current 2) 2.08 i dd(can) can supply current 2) 1.11
electrical parameters str71xfxx str710rz 42/80 doc id 10350 rev 13 4.3.2 clock and timi ng characteristics external clock sources subject to general operating conditions for v 33 , and t a . notes: 1. data based on design simulation and/or technology characteristics, not tested in production. figure 14. ck external clock source table 16. ck external clock characteristics symbol parameter conditions min typ max unit f ck external clock source frequency 0 16.5 mhz v ckh ck input pin high level voltage 0.7xv 33 v 33 v v ckl ck input pin low level voltage v ss 0.3xv 33 t w(ck) t w(ck) ck high or low time 1) 25 ns t r(ck) t f(ck) ck rise or fall time 1) 20 c in(ck) ck input capacitance 1) 5pf ducy(xt1) duty cycle 40 60 % i l ck input leakage current v ss v in v 33 1 a ck f clk external str710 clock source v ckl v ckh t r(ck) t f(ck) t w(ckh) t w(ckl) i l 90% 10% t ck
str71xfxx str710rz electrical parameters doc id 10350 rev 13 43/80 notes: 1. data based on design simulation and/or technology characteristics, not tested in production. table 17. rtcxt1 external clock characteristics symbol parameter conditions min typ max unit f rtcxt1 external clock source frequency 0 500 khz v rtcxt1h rtcxt1 input pin high level voltage 0.7xv 33 v 33 v v rtcxt1l rtcxt1 input pin low level voltage v ss 0.3xv 33 t w(rtcxt1) t w(rtcxt1) rtcxt1 high or low time 1) 100 ns t r(rtcxt1) t f(rtcxt1) rtcxt1 rise or fall time 1) 5 c in(rtcxt1) rtcxt1 input capacitance 1) 5pf ducy(rtcxt1) duty cycle 30 70 % i l rtcxt1 input leakage current v ss v in v 33 1 a
electrical parameters str71xfxx str710rz 44/80 doc id 10350 rev 13 osc32k crystal / ceramic resonator oscillator the str7 rtc clock can be supplied with a 32 khz crystal/ceramic resonator oscillators. all the information given in this paragraph are based on characterization results with specified typical external components. in the application, the resonator and the load capacitors have to be placed as close as possibl e to the oscillator pins in order to minimize output distortion and start-up st abilization time. refer to the cr ystal resonator manufacturer for more details (frequency, package, accuracy...). notes: 1. the oscillator selection can be optimized in terms of supply current using an hi gh quality resonator with small r s value for example msiv-tin32.768khz. refer to crystal manufacturer for more details 2. t su(osc32khz) is the start-up time measured from the mome nt it is enabled (by software) to a stabilized 32 khz oscillation is reached. this value is meas ured for a standard crystal resonator and it can vary significantly with t he crystal manufacturer figure 15. typical application with a 32 khz crystal table 18. 32k oscillator characteristics (f osc32k= 32.768 khz) symbol parameter conditions typ unit r f feedback resistor 2.7 m c l1 c l2 recommended load capacitance versus equivalent serial resistance of the crystal (r s ) 1) r s =40k 12.5 pf i 2 rtcxt2 driving current v 33 =3.3 v v in =v ss 3.2 a g m oscillator transconductance 8 a/v t su(osc32khz) 2) startup time v 33 is stabilized 5s rtcxt2 rtcxt1 f osc32k c l1 c l2 i 2 r f str710 32 khz when resonator with integrated capacitors resonator feedback loop
str71xfxx str710rz electrical parameters doc id 10350 rev 13 45/80 figure 16. rtc crystal oscillator and resonator pll electrical characteristics v 33 = 3.0 to 3.6v, v 33iopll = 3.0 to 3.6v, t a = -40 / 85 c unless otherwise specified. c l c l rtcxti rtcxto r s rtcxti rtcxto device device table 19. pll1 characteristics symbol parameter test conditions value unit min typ max f pllclk1 pll multiplier output clock 165 mhz f pll1 pll input clock fref_range = 0 1.5 3.0 mhz fref_range = 1 mx[1:0]=?00? or ?01? 3.0 8.25 mhz fref_range = 1 mx[1:0]=?10? or ?11? 3.0 6 mhz pll input clock duty cycle 25 75 % f free1 pll free running frequency fref_range = 0 mx[1:0]=?01? or ?11? 125 khz fref_range = 0 mx[1:0]=?00? or ?10? 250 khz fref_range = 1 mx[1:0]=?01? or ?11? 250 khz fref_range = 1 mx[1:0]=?00? or ?10? 500 khz t lock1 pll lock time fref_range = 0 stable input clock stable v 33iopll , v 18 300 s fref_range = 1 stable input clock stable v 33iopll , v 18 600 s
electrical parameters str71xfxx str710rz 46/80 doc id 10350 rev 13 t jitter1 pll jitter (peak to peak) t pll = 4 mhz, mx[1:0]=?11? global output division = 32 (output clock = 2 mhz) 0.7 2 ns table 20. pll2 characteristics symbol parameter test conditions value unit min typ max f pllclk2 pll multiplier output clock 140 mhz f pll2 pll input clock fref_range = 0 1.5 3.0 mhz fref_range = 1 3.0 5 mhz t lock2 pll lock time fref_range = 0 stable input clock stable v 33iopll , v 18 300 s fref_range = 1 stable input clock stable v 33iopll , v 18 600 s t jitter2 pll jitter (peak to peak) t pll = 4 mhz, mx[1:0]=?11? global output division = 32 (output clock = 2 mhz) 0.7 2 ns table 21. low-power mode wakeup timing symbol parameter typ unit t wulpwfi wakeup from lpwfi mode 26 (1) 1. clock selected is ck2_16, main vreg off and flash in power-down s t wustop wakeup from stop mode 2048 clk cycles (2) 2. the clk clock is derived from the external oscillator. t wustby wakeup from standby mode 2048 clk cycles + 8 clk2 cycles (3) 3. refer to figure 7. reset general timing in the str71xf reference manual (um0084) cycles table 19. pll1 characteristics (continued) symbol parameter test conditions value unit min typ max
str71xfxx str710rz electrical parameters doc id 10350 rev 13 47/80 4.3.3 memory characteristics flash memory v 33 = 3.0 to 3.6v, t a = -40 to 85 c unless otherwise specified. notes: 1. t a =45c after 0 cycles. guaranteed by ch aracterization, not tested in production. 2. guaranteed by design, not tested in production table 22. flash memory characteristics symbol parameter test conditions value unit min. typ max 1) t pw word program 40 s t pdw double word program 60 s t pb0 bank 0 program (256k) double word program 1.6 2.1 s t pb1 bank 1 program (16k) double word program 130 170 ms t es sector erase (64k) not preprogrammed preprogrammed 2.3 1.9 4.0 3.3 s t es sector erase (8k) not preprogrammed preprogrammed 0.7 0.6 1.1 1.0 s t es bank 0 erase (256k) not preprogrammed preprogrammed 8.0 6.6 13.7 11.2 s t es bank 1 erase (16k) not preprogrammed preprogrammed 0.9 0.8 1.5 1.3 s t rpd 2) recovery when disabled 20 s t psl 2) program suspend latency 10 s t esl 2) erase suspend latency 300 s n end_b0 endurance (bank 0 sectors) 10 kcycles n end_b1 endurance (bank 1 sectors) 100 kcycles t ret data retention (bank 0 and bank 1) t a =85 20 years t esr erase suspend rate min time from erase resume to next erase suspend 20 ms
electrical parameters str71xfxx str710rz 48/80 doc id 10350 rev 13 4.3.4 emc characteristics susceptibility tests ar e performed on a sample basis du ring product characterization. functional ems (electro magnetic susceptibility) based on a simple running application on the product (toggling 2 leds through i/o ports), the product is stressed by two electro magnetic ev ents until a failure occurs (indicated by the leds). esd : electro-static discharge (positive and negative) is applied on all pins of the device until a functional disturbance occurs. this test conforms with the iec 1000-4-2 standard. ftb : a burst of fast transient voltage (positive and negative) is applied to v dd and v ss through a 100pf capacitor, until a functional disturbance occurs. this test conforms with the iec 1000-4-4 standard. a device reset allows normal operations to be resumed. the test results are given in the table below based on the ems levels and classes defined in application note an1709. designing hardened software to avoid noise problems emc characterization and optimization are performed at component level with a typical application environment and simplified mcu software. it should be noted that good emc performance is highly dependent on the user application and the software in particular. therefore it is recommended that the user applies emc software optimization and prequalification tests in relation with the emc level requested for his application. software recommendations: the software flowchart must include the management of runaway conditions such as: corrupted program counter unexpected reset critical data corruption (control registers...) prequalification trials: most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forci ng a low state on the reset pin or the oscillator pins for 1 second. to complete these trials, esd stress can be applied directly on the device, over the range of specification values. when unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note an1015). in the case of an arm7 cpu, in order to write robust code that can withstand all kinds of stress, such as very strong electromagnetic disturbance, it is mandatory that the data abort, prefetch abort and undefined instruction exceptions are managed by the application software. this will prevent the code going in to an undefined stat e or performing any unexpected operation.
str71xfxx str710rz electrical parameters doc id 10350 rev 13 49/80 electro magnetic interference (emi) based on a simple application running on the product (toggling 2 leds through the i/o ports), the product is monitored in terms of emi ssion. this emission test is in line with the norm sae j 1752/3 which sp ecifies the boar d and the loading of each pin. notes : 1. not tested in production. 2. bga and lqfp devices have similar emi characteristics. absolute maximum ratings (electrical sensitivity) based on three different tests (esd, lu and dlu) using specific measurement methods, the product is stressed in order to determine its per formance in terms of electrical sensitivity. for more details, refer to the application note an1181. electro-static discharge (esd) electro-static discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. the sample size depends on the number of supply pins in the device (3 parts*(n+1) supply pin). two models can be simulated: human body model and machine model. this test conforms to the jesd22-a114a/a115a standard. table 23. ems data symbol parameter conditions level/ class v fesd voltage limits to be applied on any i/o pin to induce a functional disturbance v 33 = 3.3 v, t a = +25c, f mclk = 32 mhz conforms to iec 1000-4-2 2b v eftb fast transient voltage burst limits to be applied through 100pf on v dd and v ss pins to induce a functional disturbance v 33 = 3.3 v, t a = +25c, f mclk = 32 mhz conforms to iec 1000-4-4 4a table 24. emi data symbol parameter conditions monitored frequency band max vs. [f osc4m /f hclk ] unit 16/ 48 mhz 16/8 mhz s emi peak level v 33 = 3.3 v, t a = +25c, lqfp64 package conforming to sae j 1752/3 0.1 mhz to 30 mhz 17 19 db v 30 mhz to 130 mhz 17 16 130 mhz to 1 ghz 11 11 sae emi level 4 3 -
electrical parameters str71xfxx str710rz 50/80 doc id 10350 rev 13 notes: 1. data based on characterization results, not tested in production. static and dynamic latch-up lu : 3 complementary static tests are required on 10 parts to assess the latch-up performance. a supply overvoltage (applied to each power supply pin) and a current injection (applied to each input, output and configurable i/o pin) are performed on each sample. this test conforms to the eia/jesd 78 ic latch-up standard. for more details, refer to the application note an1181. dlu : electro-static discharges (one positive then one negative test) are applied to each pin of 3 samples when the micro is running to assess the latch-up performance in dynamic mode. power supplies are set to the typical values, the oscillator is connected as near as possible to the pins of the mi cro and the component is put in reset mode. this test conforms to the iec1000-4-2 and saej1752/3 standards. for more details, refer to the application note an1181. electrical sensitivities table 25. esd absolute maximum ratings symbol ratings conditions maximum value 1) unit v esd(hbm) electro-static discharge voltage (human body model) t a = +25c 2000 v v esd(mm) electro-static discharge voltage (machine model) 200 v esd(cdm) electro-static discharge voltage (charge device model) 750 on corner pins, 500 on others table 26. static and dynamic latch-up symbol parameter conditions class (1) 1. class description: a class is an stmi croelectronics internal specification. all its limits are higher than the jedec specifications, that means when a device belongs to class a it exceeds the jedec standard. b class strictly covers all the jede c criteria (international standard). lu static latch-up class t a = +25c t a = +85c t a = +105c a a a dlu dynamic latch-up class v dd = 3.3 v, f osc4m = 4 mhz, f mclk = 32 mhz, t a = +25c a
str71xfxx str710rz electrical parameters doc id 10350 rev 13 51/80 4.3.5 i/o port pin characteristics general characteristics subject to general operating conditions for v 33 and t a unless otherwise specified. all unused pins must be kept at a fixed voltage: using the output mode of the i/o for example or an external pull-up or pull-down resistor. notes : 1. data based on characterization results, not tested in production. 2. hysteresis voltage between schmitt trigger switching levels. based on c haracterization results, not tested. 3. when the current limitation is not possible, the v in absolute maximum rating must be respected, otherwise refer to i inj(pin) specification. a positive injection is induced by v in >v 33 while a negative injection is induced by v in electrical parameters str71xfxx str710rz 52/80 doc id 10350 rev 13 figure 17. r pu vs. v 33 with v in =v ss figure 18. i pu vs. v 33 with v in =v ss -250.0 -200.0 -150.0 -100.0 -50.0 0.0 3 3.1 3.2 3.3 3.4 3.5 3.6 v33 (v) rpu (kohm) ta=-45c ta=0c ta=+25c ta=+90c -30 -25 -20 -15 -10 -5 0 3 3.1 3.2 3.3 3.4 3.5 3.6 v33 (v) ipu (a) ta=-45c ta=0c ta=+25c ta=+90c figure 19. r pd vs. v 33 with v in =v 33 figure 20. i pd vs. v 33 with v in =v 33 0.0 50.0 100.0 150.0 200.0 250.0 300.0 3 3.1 3.2 3.3 3.4 3.5 3.6 v33 (v) rpd (kohm) ta=-45c ta=0c ta=+25c ta=+90c 0 5 10 15 20 25 30 3 3.1 3.2 3.3 3.4 3.5 3.6 v33 (v) ipd (a) ta=-45c ta=0c ta=+25c ta=+90c
str71xfxx str710rz electrical parameters doc id 10350 rev 13 53/80 output driving current subject to general operating conditions for v 33 and t a unless otherwise specified. notes: 1. the i io current sunk must always respect t he absolute maximum rating specified in table 9 and the sum of i io (i/o ports and control pins) must not exceed i vss . 2. the i io current sourced must always respect the absolute maximum rating specified in table 9 and the sum of i io (i/o ports and control pins) must not exceed i v33 . figure 21. typical v ol and v oh at v 33 =3.3v (high current ports) table 28. output driving current i/o type symbol parameter conditions min max unit standard v ol 1) output low level voltage for an i/o pin when 8 pins are sunk at same time i io =+4ma 0.4 v v oh 2) output high level voltage for an i/o pin when 4 pins are sourced at same time i io =-4ma v 33 -0.8 high current v ol 1) output low level voltage for an i/o pin when 8 pins are sunk at same time i io =+8ma 0.4 v oh 2) output high level voltage for an i/o pin when 4 pins are sourced at same time i io =-8ma v 33 -0.8 3.01 3.02 3.03 3.04 3.05 3.06 3.07 3.08 3.09 -4 -8 ioh (ma) voh(v) ta=-45c ta=0c ta=+25c ta=+90c 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 -4 -8 iol (ma) vol(v) ta=-45c ta=0c ta=+25c ta=+90c
electrical parameters str71xfxx str710rz 54/80 doc id 10350 rev 13 figure 22. typical v ol vs. v 33 figure 23. typical v oh vs. v 33 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 3 3.1 3.2 3.3 3.4 3.5 3.6 v33 (v) vol (v) iio=4ma ta=-45c ta=0c ta=+25c ta=+90c 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 3 3.1 3.2 3.3 3.4 3.5 3.6 v33 (v) vol(v) iio=8ma ta=-45c ta=0c ta=+25c ta=+90c 2.00 2.20 2.40 2.60 2.80 3.00 3.20 3.40 3.60 3 3.1 3.2 3.3 3.4 3.5 3.6 v33 (v) voh (v) iio=4ma ta=-45c ta=0c ta=+25c ta=+90c 2.00 2.20 2.40 2.60 2.80 3.00 3.20 3.40 3.60 3 3.1 3.2 3.3 3.4 3.5 3.6 v33 (v) voh(v) iio=8ma ta=-45c ta=0c ta=+25c ta=+90c
str71xfxx str710rz electrical parameters doc id 10350 rev 13 55/80 rstin pin the rstin pin input driver is cmos. a permanent pu ll-up is present which is the same as as r pu (see table 27 on page 51 ) subject to general operating conditions for v 33 and t a unless otherwise specified. notes: 1. data based on characterization results, not tested in production. 2) data guaranteed by design, not tested in production. figure 24. recommended rstin pin protection . 1) notes: 1. the r pu pull-up equivalent resistor is based on a resistive transistor (corresponding i pu current characteristics described in figure 18 ). 2. the reset network protects t he device against par asitic resets. 3. the user must ensure that the level on the rstin pin can go below the v il(rstinn) max. level specified in table 29 . otherwise the reset will not be taken into account internally. table 29. reset pin characteristics symbol parameter conditions min typ 1) max unit v il(rstinn) rstin input low level voltage 1) 0.8 v v ih(rstinn) rstin input high level voltage 1) 2 v f(rstinn) rstin input filtered pulse 2) 500 ns v nf(rstinn) rstin input not filtered pulse 2) 1.2 s 0.01 f v 33 0.01 f external reset circuit 4.7k required recommended str7x filter r pu v 33 internal reset v 33 rstin
electrical parameters str71xfxx str710rz 56/80 doc id 10350 rev 13 4.3.6 tim timer characteristics subject to general operating conditions for v 33 , f mclk , and t a unless otherwise specified. refer to section 4.3.5: i/o port pin characteristics on page 51 for more details on the input/output alternate function characteristics (output compare, input capture, external clock, pwm output...). 4.3.7 emi - external memory interface subject to general operating conditions for v dd , f hclk , and t a unless otherwise specified. the tables below use a variable which is derived from the emi_bconn registers (described in the str71x reference manual) and represents the special characteristics of the programmed memory cycle. table 30. tim characteristics symbol parameter conditions min typ max unit t w(icap)in input capture pulse time 2 t ck_tim t res(tim) timer resolution time 1 t pclk2 f pclk2 = 30 mhz 33.3 ns f ext timer external clock frequency f ck_tim(max) = f mclk 0 f ck_tim /4 mhz f ck_tim = f mclk = 60 mhz 015mhz res tim timer resolution 16 bit t counter 16-bit counter clock period when internal clock is selected 1 65536 t pclk2 f pclk2 = 30 mhz 0.033 2184 s t max_count maximum possible count 65536x 65536 t pclk f pclk2 = 30 mhz 143.1 s table 31. emi general characteristics symbol parameter value t mclk cpu clock period 1 / f mclk t c memory cycle time wait states t mclk x (1 + [c_length])
str71xfxx str710rz electrical parameters doc id 10350 rev 13 57/80 see figure 25 , figure 26 , figure 27 and figure 28 for related timing diagrams. 1. data based on characterisation results, not tested in production. see figure 29 , figure 30 , figure 31 and figure 32 for related timing diagrams. 1. data based on characterisation results, not tested in production. table 32. emi read operation symbol parameter test conditions value unit min 1) typ max 1) t rcr read to csn removal time mclk=50 mhz 4 wait states 50 pf load on all pins 19 t mclk 21 ns t rp read pulse time 98 t c 100 ns t rds read data setup time 22 ns t rdh read data hold time 0 ns t ras read address setup time 27 1.5*t m clk 33 ns t rah read address hold time 0.65 2 ns t rat read address turnaround time 1.9 3.25 ns t rrt rdn turnaround time 20 t mclk 21 ns table 33. emi write operation symbol parameter test conditions value unit min 1) typ max 1) t wcr wen to csn removal time mclk=50 mhz 3 wait states 50 pf load on all pins 20 t mclk 22.5 ns t wp write pulse time 77.5 t c 80 ns t wds1 write data setup time 1 97 t c + t mclk 100 ns t wds2 write data setup time 2 77 t c 80 ns t wdh write data hold time 20 t mclk 23 ns t was write address setup time 27 1.5*t mclk 33 ns t wah write address hold time 0.6 3 ns t wat write address turnaround time 1.75 4.1 ns t wwt wen turnaround time 20 t mclk 23 ns
electrical parameters str71xfxx str710rz 58/80 doc id 10350 rev 13 figure 25. read cycle timing: 16-bit read on 16-bit memory figure 26. read cycle timing: 32-bit read on 16-bit memory see ta bl e 3 2 for read timing data. figure 27. read cycle timing: 16-bit read on 8-bit memory csn.x wen.x a[23:0] d[15:0] rdn (input) address data input t rds t rdh t rcr t ras t rah t rp csn.x wen.x a[23:0] d[15:0] rdn (input) address data input t rds t rdh t rcr t ras t rah data input t rds t rdh t rrt t rah address t rat t rp t rp csn.x wen.x a[23:0] d[7:0] rdn (input) address data input t rds t rdh t rcr t ras t rah data input t rds t rdh t rrt t rah address t rat t rp t rp
str71xfxx str710rz electrical parameters doc id 10350 rev 13 59/80 figure 28. read cycle timing: 32-bit read on 8-bit memory see ta bl e 3 2 for read timing data. figure 29. write cycle timing: 16-bit write on 16-bit memory figure 30. write cycle timing: 32-bit write on 16-bit memory see ta b l e 4 4 for write timing data. csn.x wen.x a[23:0] d[7:0] rdn (input) address data input t rds t rdh t rcr t ras t rah data input t rds t rdh t rrt t rah address t rat t rp t rp t rrt t rah address t rat t rp data input t rds t rdh t rrt t rah address t rat t rp data input t rds t rdh csn.x wen.x a[23:0] d[15:0] rdn (output) address data output t wdh t wcr t was t wds1 t wah t wp csn.x wen.x a[23:0] d[15:0] rdn (output) address data output t wds1 t wdh t wcr t was t wah t wp data output t wds2 t wdh t wwt t wah address t wat t wp
electrical parameters str71xfxx str710rz 60/80 doc id 10350 rev 13 figure 31. write cycle timing: 16-bit write on 8-bit memory figure 32. write cycle timing: 32-bit write on 8-bit memory see ta bl e 3 3 for write timing data. 4.3.8 i 2 c - inter ic control interface subject to general operating conditions for v 33 , f pclk1 , and t a unless otherwise specified. the str7 i 2 c interface meets the requirements of the standard i 2 c communications protocol described in the following table with the restriction mentioned below: note: restriction: the i/o pins which sda and scl are mapped to are not ?true? open-drain: when configured as open-drain, the pmos connected between the i/o pin and v 33 is disabled, but it is still present. also , there is a protec tion diode between the i/o pin and v 33 . consequently, when using this i 2 c in a multi-master network, it is not possible to power off the str7x while some another i 2 c master node remains powered on: otherwise, the str7x will be powered by the protection diode. refer to i/o port characteristics for more details on the input/output alternate function characteristics (sda and scl). csn.x wen.x a[23:0] d[7:0] rdn (output) address data output t wds1 t wdh t wcr t was t wah t wp data output t wds2 t wdh t wwt t wah address t wat t wp csn.x wen.x a[23:0] d[7:0] rdn (output) address data output t wds1 t wdh t wcr t was t wah t wp data output t wds2 t wdh t wwt t wah address t wat t wp t wwt t wah address t wat t wp data output t wds2 t wdh t wwt t wah address t wat t wp data output t wds2 t wdh
str71xfxx str710rz electrical parameters doc id 10350 rev 13 61/80 notes: 1. data based on standard i 2 c protocol requirement, not tested in production. 2. the device must internally provide a hold time of at least 300 ns for th e sda signal in order to bridge the undefined region of the falling edge of scl. 3. the maximum hold time t h(sda) is not applicable. 4. measurement points are done at cmos levels: 0.3xv dd and 0.7xv dd . 5. f pclk1 , must be at least 8 mhz to achieve max fast i 2 c speed (400 khz). 6. the following table gives the values to be wri tten in the i2cccr register to obtain the required i 2 c scl line frequency. table 34. i2c characteristics symbol parameter standard mode i 2 c fast mode i 2 c 5) unit min 1) max 1) min 1) max 1) t w(scll) scl clock low time 4.7 1.3 s t w(sclh) scl clock high time 4.0 0.6 t su(sda) sda setup time 250 100 ns t h(sda) sda data hold time 0 3) 0 2) 900 3) t r(sda) t r(scl) sda and scl rise time 1000 20+0.1c b 300 t f(sda) t f(scl) sda and scl fall time 300 20+0.1c b 300 t h(sta) start condition hold time 4.0 0.6 s t su(sta) repeated start condition setup time 4.7 0.6 t su(sto) stop condition setup time 4.0 0.6 s t w(sto:sta) stop to start condition time (bus free) 4.7 1.3 s c b capacitive load for each bus line 400 400 pf
electrical parameters str71xfxx str710rz 62/80 doc id 10350 rev 13 figure 33. typical application with i 2 c bus and timing diagram legend: r p = external pull-up resistance f scl = i 2 c speed na = not achievable note: for speeds around 200 khz, achieved speed can have 5% tolerance for other speed ranges, achieved speed can have 2% tolerance the above variations depend on the accuracy of the external components used. table 35. scl frequency table ( f pclk1 =8 mhz.,v 33 = 3.3 v) f scl (khz) i2cccr value r p =4.7k 400 83 300 85h 200 8ah 100 24h 50 4ch 20 c4h repeated start start stop start t f(sda) t r(sda) t su(sda) t h(sda) t f(sck) t r(sck) t w(sckl) t w(sckh) t h(sta) t su(sto) t su(sta) t w(sto:sta) sda scl 4.7k sda str7 scl v dd 100 100 v dd 4.7k i 2 cbus
str71xfxx str710rz electrical parameters doc id 10350 rev 13 63/80 4.3.9 bspi - buffered ser ial peripheral interface subject to general operating conditions for v dd , t a and f pclk1 ,unless otherwise specified. refer to i/o port pin characteristics on page 51 for more details on the input/output alternate function characteristics (ss , sck, mosi, miso). table 36. bspi characteristics symbol parameter conditions min max unit f sck 1/t c(sck) spi clock frequency master f pclk1 /254 f pclk1 /6 5.5 mhz slave 0 f pclk1 /8 3.3 t r(sck) t f(sck) spi clock rise and fall time capacitive charge c=50 pf 14 ns t su(ss ) (1) ss setup time slave 0 t h(ss ) (1) ss hold time slave 0 t w(sckh) (1) t w(sckl) (1) sck high and low time master f pclk1 =33 mhz, presc = 6 73 t su(mi) (1) t su(si) (1) data input setup time master slave 7 0 t h(mi) 1)(2) t h(si) 1)(2) data input hold time master slave 1xt pclk1 2xt pclk1 t h(mi) (1) t h(si) (1) data input hold time master f pclk1 =33 mhz slave f pclk1 =33 mhz 30 60 t a(so) 1)(3) data output access time slave 0 1.5xt pclk1 +42 slave f pclk1 =33 mhz 0 87 t dis(so) (1)(4) data output disable time slave 0 42 t v(so) (1)(2) data output valid time slave (after enable edge) 3xt pclk1 +45 f pclk1 =33 mhz 135 t h(so) (1) data output hold time slave (after enable edge) 0 t v(mo) (1)(2) data output valid time master (after enable edge) 2xt pclk1 +12 f pclk1 =33 mhz 72 t h(mo) (1) data output hold time master (after enable edge) 0 1. data based on design simulation and/or char acterisation results, not tested in production. 2. depends on f pclk1 . for example, if f pclk1 =8 mhz, then t pclk1 = 1/f pclk1 =125 ns and t v(mo) = 255 ns. 3. min. time is the minimum time to drive the output and the max. time is the maximum time to validate the data. 4. min time is the minimun time to invalidate the output and the max time is the maximum time to put the data in hi-z.
electrical parameters str71xfxx str710rz 64/80 doc id 10350 rev 13 figure 34. spi slave timing diagram with cpha=0 1) figure 35. spi slave timing diagram with cpha=1 1) figure 36. spi master timing diagram 1) 1. measurement points are done at cmos levels: 0.3xv 33 and 0.7xv 33 ss input sck input cpha=0 mosi input miso output cpha=0 t c(sck) t w(sckh) t w(sckl) t r(sck) t f(sck) t v(so) t a(so) t su(si) t h(si) msb out msb in bit6 out lsb in lsb out cpol=0 cpol=1 t su(ss ) t h(ss ) t dis(so) t h(so) bit1 in ss input sck input cpha=1 mosi input miso output cpha=1 t w(sckh) t w(sckl) t r(sck) t f(sck) t a(so) t su(si) t h(si) msb out bit6 out lsb out cpol=0 cpol=1 t su(ss ) t h(ss ) t dis(so) t h(so) t c(sck) t v(so) msb in lsb in bit1 in sck output cpha = 0 mosi output miso input cpha = 0 cpha = 1 cpha = 1 t c(sck) t w(sckh) t w(sckl) t h(mi) t su(mi) msb in msb out bit6 in bit6 out lsb out lsb in cpol = 0 cpol = 1 cpol = 0 cpol = 1 t r(sck) t f(sck) t h(mo) t v(mo) ss input
str71xfxx str710rz electrical parameters doc id 10350 rev 13 65/80 4.3.10 usb characteristics the usb interface is usb-if certified (full speed). figure 37. usb: data signal rise and fall time table 37. usb startup time symbol parameter conditions max unit t startup usb transceiver startup time 1 s table 38. usb dc characteristics symbol parameter conditions min. (1)(2) 1. all the voltages are measured from the local ground potential. 2. it is important to be aware that the dp/dm pins are not 5 v tolerant. as a consequence, in case of a a shortcut with vbus (typ: 5.0v), the protection diodes of the dp/dm pins w ill be direct biased . this will not damage the device if not more than 50 ma is sunk for longer than 24 hours but the reliability may be affected. max. (1)(2) unit input levels v di differential input sensitivity i(dp, dm) 0.2 v v cm differential common mode range includes v di range 0.8 2.5 v se single ended receiver threshold 1.3 2.0 output levels v ol static output level low r l of 1.5 k to 3.6v (3) 3. r l is the load connected on the usb drivers 0.3 v v oh static output level high r l of 15 k to v ss (3) 2.8 3.6 table 39. usb: full speed driver electrical characteristics symbol parameter con ditions min max unit t r rise time (1) 1. measured from 10% to 90% of the data signal. for more detailed information, please refer to usb specification - chapt er 7 (version 2.0). c l =50 pf 420ns t f fall time 1) c l =50 pf 4 20 ns t rfm rise/ fall time matching t r /t f 90 110 % v crs output signal crossover voltage 1.3 2.0 v differential data lines v ss t f t r crossover points v crs
electrical parameters str71xfxx str710rz 66/80 doc id 10350 rev 13 4.3.11 adc characteristics subject to general operating conditions for av dd , f pclk2 , and t a unless otherwise specified. notes: 1. unless otherwise specifi ed, typical data are based on t a =25c and av dd -av ss =3.3v. they are given only as design guidelines and are not tested. 2. any added external serial resistor will downgrade the adc accuracy (especially for resistance greater than 10k ). data based on characterization re sults, not tested in production. 3. calibration is needed once after each power-up. table 40. adc characteristics symbol parameter conditions min typ 1) max unit f mod modulator oversampling frequency 2.1 mhz v ain conversion voltage range 2)3) 02.5v i lkg negative input leakage current on analog pins v in < v ss, | i in |< 400a on adjacent analog pin 56 a pbr passband ripple 0.1 db sinad s/n and distortion 56 63 db thd total harmonic distortion 60 74 db z in input impedance f mod = 2 mhz 1 m c adc internal sample and hold capacitor 3.2 pf t conv total conversion time (including sampling time) 2048/ f mod (max) i adc normal mode t a = 27 c 2.5 3.0 ma standby mode t a = 27 c 1 a
str71xfxx str710rz electrical parameters doc id 10350 rev 13 67/80 data are based on characterisation and are not tested in production. adc accuracy vs. negative injection current injecting negative current on any of the standard (non-robust) analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. it is recommended to add a schottky diode (pin to ground) to standard analog pins which may potentially inject negative current. the effect of negative injection current on robust pins is specified in section 4.3.5 . any positive injectio n current within the limits specified for i inj(pin) and i inj(pin) in section 4.3.5 does not affect the adc accuracy. table 41. adc accuracy with f pclk2 = 20 mhz, f adc =10 mhz, av dd =3.3 v symbol parameter conditions min typ max unit adc_data(0v) converted code when ain=0v 1) 2370 2565 dec- imal code adc_data(2.5v) converted code when ain=2.5v 1) 1480 1680 vcm center voltage of sigma-delta modulator 1) 1.23 1.25 1.30 v tue total unadjusted error in this type of adc, calibration is necessary to correct gain error and offset errors. once calibrated, the tue is limited to the ile. |e d | differential linearity error 1) 1.96 2.19 lsb |e l | integral linearity error 1) 2.36 3.95
electrical parameters str71xfxx str710rz 68/80 doc id 10350 rev 13 figure 38. adc accuracy characteristics 1. example of an actual transfer curve 2. the ideal transfer curve 3. end point correlation line legend for figure 38 e d =differential linearity error: maximum deviation between actual steps and the ideal one. e l =integral linearity error: maximum deviation between any actual transition and the end point correlation line. equation 1 1lsb ideal v ain (lsb ideal ) digital result adc_data register 4095 4094 4093 5 4 3 2 1 0 123 4093 4094 4095 (1) (2) e d e l (3) av dd av ss adc_data(0v) adc_data(2.5v) vcm 3100 3101 3102 3103 out of range 1633 1lsb ideal avdd avss ? 4095 ---------------------------------------- =
str71xfxx str710rz electrical parameters doc id 10350 rev 13 69/80 analog power supply and reference pins the av dd and av ss pins are the analog power supply of the a/d converter cell. they act as the high and low reference voltages for the conversion. separation of the digital and analog power pins allow board designers to improve a/d performance. conversion accuracy can be impacted by voltage drops and noise in the event of heavily loaded or badly decoupled power supply lines (see : general pcb design guidelines ). general pcb design guidelines to obtain best results, some general design and layout rules should be followed when designing the application pcb to shield the noise-sensitive, analog physical interface from noise-generating cmos logic signals. use separate digital and analog planes. the analog ground plane should be connected to the digital ground plane via a single point on the pcb. filter power to the analog power planes. it is recommended to connect capacitors, with good high frequency characteristics, between the power and ground lines, placing 0.1 f and optionally, if needed 10 pf capacitors as close as possible to the str7 power supply pins and a 1 to 10 f ca pacitor close to the power source (see figure 39 ). the analog and digital power supplies should be connected in a star network. do not use a resistor, as av dd is used as a reference voltage by the a/d converter and any resistance would cause a voltage drop and a loss of accuracy. properly place components and route the signal traces on the pcb to shield the analog inputs. analog signals paths should run over the analog ground plane and be as short as possible. isolate analog signals from digital signals that may switch while the analog inputs are being sampled by the a/d converter. do not toggle digital outputs near the a/d input being converted. software filtering of spurious conversion results for emc performance reasons, it is recommended to filter a/d conversion outliers using software filtering techniques. figure 39. power supply filtering v ss v 33 0.1 f v 33 str710 av dd av ss power supply source str7 digital noise filtering external noise filtering 1 to 10 f 0.1 f (3.3v)
package characteristics str71xfxx str710rz 70/80 doc id 10350 rev 13 5 package characteristics 5.1 package mechanical data figure 40. 64-pin low profile quad flat package (10x10) dim. mm inches min typ max min typ max a 1.60 0.063 a1 0.05 0.15 0.002 0.006 a2 1.35 1.40 1.45 0.053 0.055 0.057 b 0.17 0.22 0.27 0.007 0.009 0.011 c 0.09 0.20 0.004 0.008 d 12.00 0.472 d1 10.00 0.394 e 12.00 0.472 e1 10.00 0.394 e 0.50 0.020 0 3.5 7 0 3.5 7 l 0.45 0.60 0.75 0.018 0.024 0.030 l1 1.00 0.039 number of pins n 64 a a2 a1 c h l1 l e e1 d d1 e b recommended footprint (dimensions in mm)
str71xfxx str710rz package characteristics doc id 10350 rev 13 71/80 figure 41. 144-pin low profile quad flat package dim. mm inches (1) 1.values in inches are converted from mm and rounded to 3 decimal digits. min typ max min typ max a 1.60 0.063 a1 0.05 0.15 0.002 0.006 a2 1.35 1.40 1.45 0.053 0.057 b 0.17 0.22 0.27 0.007 0.011 c 0.09 0.20 0.004 0.008 d 21.80 22.00 22.20 0.858 0.867 0.874 d1 19.80 20.00 20.20 0.780 0.787 0.795 d3 17.50 0.689 e 21.80 22.00 22.20 0.858 0.867 0.874 e1 19.80 20.00 20.20 0.780 0.787 0.795 e3 17.50 0.689 e 0.50 0.020 k 0 3.5 7 0 3.5 7 l 0.45 0.60 0.75 0.018 0.024 0.030 l1 1.00 0.039 number of pins n 144 jedec ref. ms-026-bfb a a2 a1 b c 36 37 72 73 108 109 144 e1 e d1 d 1 h b l l1 seating plane 0.08 mm .003 in. e e3 d3 recommended footprint (dimensions in mm)
package characteristics str71xfxx str710rz 72/80 doc id 10350 rev 13 figure 42. 64-low profile fine pitch ball grid array package figure 43. 144-low profile fine pitch ball grid array package figure 44. recommended pcb design rules (0.80/0.75mm pitch bga) dim. mm inches min typ max min typ max a 1.210 1.700 0.048 0.067 a1 0.270 0.011 a2 1.120 0.044 b 0.450 0.500 0.550 0.018 0.020 0.022 d 7.750 8.000 8.150 0.305 0.315 0.321 d1 5.600 0.220 e 7.750 8.000 8.150 0.305 0.315 0.321 e1 5.600 0.220 e 0.720 0.800 0.880 0.028 0.031 0.035 f 1.050 1.200 1.350 0.041 0.047 0.053 ddd 0.120 0.005 number of pins n 64 dim. mm inches 1) min typ max min typ max a 1.21 1.70 0.0476 0.0669 a1 0.21 0.0083 a2 1.085 0.0427 b 0.35 0.40 0.45 0.0138 0.0157 0.0177 d 9.85 10.00 10.15 0.3878 0.3937 0.3996 d1 8.80 0.3465 e 9.85 10.00 10.15 0.3878 0.3937 0.3996 e1 8.80 0.3465 e 0.80 0.0315 f 0.60 0.0236 ddd 0.10 0.0039 eee 0.15 0.0059 fff 0.08 0.0031 number of pins n 144 1 values in inches are converted from mm and rounded to 4 decimal digits. dpad dsm dpad 0.37 mm dsm 0.52 mm typ. (depends on solder mask registration tolerance solder paste 0.37 mm aperture diameter ? non solder mask defined pads are recommended ? 4 to 6 mils screen print
str71xfxx str710rz package characteristics doc id 10350 rev 13 73/80 5.2 thermal characteristics the average chip-junction temperature, t j , in degrees celsius, may be calculated using the following equation: t j = t a + (p d x ja ) (1) where: t a is the ambient temperature in c, ja is the package junction-to-ambient thermal resistance, in c/w, p d is the sum of p int and p i/o (p d = p int + p i/o ), p int is the product of i dd and v dd , expressed in watts. this is the chip internal power. p i/o represents the power dissipation on input and output pins; most of the time for the application p i/o < p int and can be neglected. on the other hand, p i/o may be significant if the device is configured to drive continuously external modules and/or memories. an approximate relationship between p d and t j (if p i/o is neglected) is given by: p d = k / (t j + 273c) (2) therefore (solving equations 1 and 2): k = p d x (t a + 273c) + ja x p d 2 (3) where: k is a constant for the particular part, which may be determined from equation (3) by measuring p d (at equilibrium) for a known t a. using this value of k, the values of p d and t j may be obtained by solving equations (1) and (2) iteratively for any value of t a . table 42. thermal characteristics symbol parameter value unit ja thermal resistance junction-ambient lqfp 144 - 20 x 20 mm / 0.5 mm pitch 42 c/w ja thermal resistance junction-ambient lqfp 64 - 10 x 10 mm / 0.5 mm pitch 45 c/w ja thermal resistance junction-ambient lfbga 64 - 8 x 8 x 1.7mm 58 c/w ja thermal resistance junction-ambient lfbga 144 - 10 x 10 x 1.7mm 50 c/w
product history str71xfxx str710rz 74/80 doc id 10350 rev 13 6 product history there are three versions of the str710f series products. all versions are functionally identical and differ only with the points listed below. version "a" was the first version produced and delivered. version "z" was the second in production replacing version "a". version "z" has lower power consumption in stop mode. version "x" is the latest introduced. marking the difference between versions is visible on the marking of the product as shown in the four examples in figure 45 through figure 48 . figure 45. lqfp144 str710 version ?a? figure 46. lqfp64 str712 version ?z? str710fz2t6 2208jvg mlt225571 a str710fz2t6 2208jvg mlt225571 a str712fr2 2208jvg mlt225571 t6 z
str71xfxx str710rz product history doc id 10350 rev 13 75/80 figure 47. bga144 str710 version ?z? figure 48. bga64 str711 version ?x? r710z2h6 2208jvg z mlt 22 551 r711r1h6 2208jvg mlt225571 x table 43. a, z and x version differences feature a version z version x version arm7tdmi core device identification (id) code register (see arm7tdmi technical reference manual) version bits [31:28] = 0001 version bits [31:28] = 0010 version bits [31:28] = 0010 low power mode consumption in stop mode at 25 c not guaranteed typical 49 a 50 a maximum at 25c. less than 30 a at 25 c for 99.730020% of parts same as z. sc.data pin not true open drain when addressing 5v cards, the scdata line must be connected to an open drain buffer. pin p0.10/u1.rx/u1.tx/sc. data has been modified to offer true open drain functionality when in smartcard mode. when addressing 5v cards, the scdata line can now be connected directly to the card i/o. this modification is backward compatible with previous designs, and no board modification is required.
ordering information str71xfxx str710rz 76/80 doc id 10350 rev 13 7 ordering information figure 49. str71xf ordering information scheme 1. for a list of available options (e.g. memory size, package) and orderab le part numbers or for further information on any aspect of this device, pl ease go to www.st.com or contact the st sales office nearest to you. str710 fz1t6 product class str71x microcontroller pin count r = 64 pins z = 144 pins package type h = lfbga t = lqfp example: peripheral set 0 = full peripheral set 1 = no emi, no can 2 = no emi, no usb 5 = no emi, no usb, no can temperature range 1 = 0 c to 70 c 3 = -40 c to 125 c 6 = -40 c to 85 c program memory size 0 = 64+16k 1 = 128+16k 2 = 256+16k no character = 0k packing no character = tray or tube tr = tape and reel program memory type f = flash
str71xfxx str710rz known limitations doc id 10350 rev 13 77/80 8 known limitations description if an irq or fiq interrupt is pending and the interrupt vector register (eic_ivr) is not yet read, the halt bit in the rccu_smr register ca n not be written. therefore a software reset can not be generated. workaround to generate a software reset when an irq or fiq line is pending, either: reset the eic peripheral by setting bit 14 in the apb2_swres register, or read the eic_ivr register prior to generating a software reset.
revision history str71xfxx str710rz 78/80 doc id 10350 rev 13 9 revision history table 44. document revision history date revision changes 17-mar-2004 1 first release 05-apr-2004 2 updated ?electrical parameters? on page 34 08-apr-2004 2.1 corrected str712f pinout. pins 43/42 swapped. 15-apr-2004 2.2 pdf hyperlinks corrected. 7-jul-2004 3 corrected description of stdby, v18, vss18 v18bkp vssbkp pins added iddrun typical data updated bspi max. baudrate. updated ?emi - external memory interface? on page 56 29-oct-2004 4 corrected flash sector b1f0/f1 address in figure 6: memory map on page 31 corrected table 5 on page 25 lqfp64 test pin is 16 instead of 17. added to tqpfp64 column: pin 7 booten, pin 17 v 33io-pll changed description of jtck from ?external pull-down required? to ?external pull-up or pull down required?. 25-jan-2005 5 changed ?product preview? to ?preliminary data? on page 1 and 3 renamed ?pu/pd? column to ?reset state? in table 5 on page 25 added reference to str7 flash programming reference manual 19-apr-2005 6 added str715f devices and modified ram size of str71xf1 devices added bga package in section 5 updated ordering information in section 7 . added pll duty cycle min and max. in pll electrical characteristics on page 45 13-oct-2005 7 updated feature description on page 1 update overview section 1.1 added od/pp to p0.12 in ta bl e 5 changed name of wfi mode to wait mode changed memory map ta b l e 6 : ext. memory changed to 64 mb and flash register changed to 36 bytes. added power consumption ta b l e 1 3 modified bga144 f3, f5, f12 and g12 in ta b l e 3 and ta b l e 4 update emi timing ta bl e 2 4 and figure 29
str71xfxx str710rz revision history doc id 10350 rev 13 79/80 22-may-2006 8 added flashless device. changed reset state of pins p1.10 and p1.13 from pu to pd, p0.15 from pu to floating and removed x in interrupt column for p1.15 and p1.12 in ta b l e 4 and ta bl e 5 added notes under ta bl e 4 on emi pin reset state. corrected inch value for d3 in figure 40 added footprint diagrams in figure 40 and figure 43 updated section 4: electrical parameters 01-aug-2006 9 flash data retention changed to 20 years at 85 c. changed note 8 on page 19 changed note 1 on page 45 06-nov-2006 10 added str715fr0t1 in table 42: order codes p0.12 corrected in table 5 on page 25 20-mar-2007 11 added characteristics of bspi - buffered serial peripheral interface on page 63 updated table 21: low-power mode wakeup timing on page 46 13-feb-2008 12 updated ordering information updated usb characteristics updated external clock characteristics 03-apr-2013 13 updated title (to be in line with the ?device summary? table) updated st logo and disclaimer added section 8: known limitations table 44. document revision history (continued) date revision changes
str71xfxx str710rz 80/80 doc id 10350 rev 13 please read carefully: information in this document is provided solely in connection with st products. stmicroelectronics nv and its subsidiaries (?st ?) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described he rein at any time, without notice. all st products are sold pursuant to st?s terms and conditions of sale. purchasers are solely responsible for the choice, selection and use of the st products and services described herein, and st as sumes no liability whatsoever relating to the choice, selection or use of the st products and services described herein. no license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. i f any part of this document refers to any third party products or services it shall not be deemed a license grant by st for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoev er of such third party products or services or any intellectual property contained therein. unless otherwise set forth in st?s terms and conditions of sale st disclaims any express or implied warranty with respect to the use and/or sale of st products including without limitation implied warranties of merchantability, fitness for a parti cular purpose (and their equivalents under the laws of any jurisdiction), or infringement of any patent, copyright or other intellectual property right. st products are not authorized for use in weapons. nor are st products designed or authorized for use in: (a) safety critical applications such as life supporting, active implanted devices or systems with product functional safety requirements; (b) aeronautic applications; (c) automotive applications or environments, and/or (d) aerospace applications or environments. where st products are not designed for such use, the purchaser shall use products at purchaser?s sole risk, even if st has been informed in writing of such usage, unless a product is expressly designated by st as being intended for ?automotive, automotive safety or medical? industry domains according to st product design specifications. products formally escc, qml or jan qualified are deemed suitable for use in aerospace by the corresponding governmental agency. resale of st products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by st for the st product or service described herein and shall not create or extend in any manner whatsoev er, any liability of st. st and the st logo are trademarks or registered trademarks of st in various countries. information in this document supersedes and replaces all information previously supplied. the st logo is a registered trademark of stmicroelectronics. all other names are the property of their respective owners. ? 2013 stmicroelectronics - all rights reserved stmicroelectronics group of companies australia - belgium - brazil - canada - china - czech republic - finland - france - germany - hong kong - india - israel - ital y - japan - malaysia - malta - morocco - philippines - singapore - spain - sweden - switzerland - united kingdom - united states of america www.st.com


▲Up To Search▲   

 
Price & Availability of STR710FZ2H6

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X